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Chapter 2: The nature of tidal signals 

2.1 Introduction 

Much of this study is concerned with the identification and analysis of tidal signals in 

hydrothermal systems associated with mid-ocean ridge. Consequently, it is appropriate to 

define the term tidal signal before proceeding any further. An observer at rest on the Earth 

experiences a force per unit mass due to the gravitational attraction of celestial bodies. This 

is known as the tide-generating force and is the spatial gradient of a function known as the 

tidal potential (W) (Melchior, 1983).  

 

A tidal signal can then be defined to be any time-series, or component of a time-series, 

whose cause is the tidal potential. Generally, time-series are influenced by many physical 

processes, some of which are independent of the tidal potential. It is often helpful to 

decompose an empirical time-series into two parts: a tidal signal; and a residual signal 

containing the contributions of noise, instrumental drift and other physical processes. (In 

Chapter 3, an explicit formalism for splitting the residual into a drift signal and a noise signal 

is discussed.)   

 

There are many observable consequences of the tidal potential - of which the rise and fall of 

the oceans (the ocean tide) and associated horizontal currents (tidal streams) are the most 

commonly known. Less obviously, the Earth’s crust is deformed directly by the tide-

generating force (to produce the solid tide) and by the weight of the shifting oceans (to 

produce the load tide). All of these phenomena produce tidal signals. In every case there is a 

well-understood physical mechanism by which the tidal potential causes the observable time-

series. In addition, each of these signals has a frequency spectrum which is similar to that of 

the tidal potential, in the sense that it contains power at the same discrete set of frequencies 

and in roughly the same proportions. It must be stressed that tidal signals are not required, by 

definition, to have these typically tidal spectra. Nonetheless, it appears that many of them do. 

This is because their dependence on the tidal potential is approximately linear.  

 

In particular, it is often the case that the physical process linking the local tidal potential 

(W(t)) to an observable time-series (ζ(t)) can be well approximated by a time-domain 

convolution with a response function r(t) (Munk & Cartwright, 1966): 
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the convolution can be transformed into a multiplication in the frequency domain:  

                  (2.3) ( ) ( ) ( )fWfRf ˆˆ ⋅=ζ

Hence, provided that the admittance (R(f)) is a reasonably smooth function of frequency (f) 

the process ζ(t) will have a similar spectrum to the tidal potential W(t). 

 

Regardless of whether a time-series (ζ(t)) really does depend on the tidal potential in this 

linear fashion it is of interest to examine its frequency spectrum. A spectrum containing 

power at the typical tidal frequencies may be taken as strong evidence that the signal under 

analysis is influenced by the tidal potential. 

  

The tidal potential has a highly distinctive power spectrum, which can be calculated to great 

precision. It is reasonable to expect that any tidal signal will exhibit similar behaviour. For 

this reason, it is of great benefit to review the nature of the tidal potential in considerable 

detail, before considering any data which might be affected by it.  

 

The next step is to identify, a priori, some plausible physical mechanisms by which the tidal 

potential might affect seafloor hydrothermal systems. The first order effects of the tidal 

potential (the solid, ocean and load tides, as well as tidal streams) are examined in turn. 

Qualitative estimates are then made of how these first order effects might lead to the second 

order effects (variations in temperature, flow rate and effluent chemistry) observed at 

hydrothermal systems. 

2.2 The Tidal Potential of a celestial body 

By definition, all tidal phenomena on Earth are caused by the gravitational fields of celestial 

bodies. Every astronomical object creates tidal forces on Earth, but it is the contributions 

from the moon and the sun which are, by far, the most important (Doodson & Warburg, 

1941). Consequently, it is only the lunar and solar tides which are considered here.  
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At any fixed point on the Earth’s surface, the tidal potential changes over time as the moon 

and the sun move with respect to the rotating Earth. Two spherical co-ordinate systems are 

commonly used to describe this motion – the ecliptic system and the equatorial system. Their 

relationship is summarised in Figure 2.1.  

 

Figure 2.1: The position of a tide-raising body, B, relative to the centre of the

Earth, O, and the vernal equinox, V. The point NP is the celestial

North Pole. In equatorial coordinates, the point B is described by

the triple (r,a,d). In ecliptic coordinates, it is described by the triple

(r,x,y). Coordinates are named as follows: r - distance from the

centre of the Earth, a - right ascension, d – declination, x – ecliptic

longitude, y – ecliptic latitude. Figure adapted from Doodson &

Warburg (1941). 

Consider the tidal potential at a point P due to a single tide-raising body B of mass MB 

(Figure 2.2). The tide-raising body lies at a distance rB from the centre of the earth, and at a 

declination d above the equator. 

The tidal potential at P, W(r,λ,Z), can be written as a sum of spherical harmonic functions. 

For practical purposes, W(r,λ,Z) is approximated to sufficient accuracy by the first term in 

this series, the second order spherical harmonic function W2(r,λ,Z) (Melchior, 1983; Doodson 

& Warburg, 1941).   
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Figure 2.2: The tidal potential W at a point P on the Earth’s surface, due to a

single tide-raising body B with declination d. NP is the North Pole.

UT is the point of upper transit, directly below the tide-raising body.

The location of P can described by (r,λ,Z), where r is distance to the

centre of the Earth, λ is (terrestrial) latitude and Z is the angle between

the meridian of lower transit (LT) and the meridian of the point P. The

tidal potential at P is W(r,λ,Z) as described in the text. Figure adapted

from Doodson &Warburg (1941). 

If G is the gravitational constant, W2(r,λ,Z) is defined by: 
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It is very important that the tidal potential due to a tide-raising body varies over two separate 

timescales. Firstly, there is a short timescale associated with the rotation of the Earth. The 

angle (Z(t)) between the meridian of the tide-raising body and the meridian of the point P 

increases at a rate of ~15º per hour (or ~360º per day). Consequently, the tidal potential at P 

displays diurnal (cos(Z)) and semi-diurnal (cos(2Z)) periodicity. Secondly, there is a long 

timescale, associated with the oscillations in declination d(t) and distance rB(t) of the tide-

raising body. These oscillations have a period of ~1 month when the tide-raising body is the 

moon, and ~1 year when it is the sun. The interaction of periodic processes on these short 

(daily) and long (monthly and yearly) timescales leads to the characteristic spectral nature of 

tidal phenomena (Section 2.3.4).  
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Time-series measurements of hydrothermal systems often span a time interval intermediate 

between these short and long timescales (Chapter 4). In Chapter 3, it is shown that this has 

important implications for the extraction of tidal information from a seafloor dataset. 

2.3 Decomposition of the Tidal Potential 

2.3.1 Decomposition by species 

Defining ME to be the mass of the Earth, and rE to be the radius of the Earth, the gravitational 

acceleration at the Earth’s surface (g) is given by: 
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Hence, the tidal potential at the Earth’s surface, due to a single tide-raising body, is: 
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This can be split into three species by considering the three terms on the right hand side of 

equation (2.6). 

 

The first species, known as the long-period species, consists of the term: 
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This expression changes over time because of the long timescale changes in the distance rB(t) 

and declination d(t) of the tide-raising body. The exact formulae for rB(t) and d(t) need not be 

quoted here. It is sufficient to note that they have been calculated to great precision for both 

the moon and the sun (Doodson & Warburg, 1941), and are available in public domain 

computer codes such as ETGTAB and CSR. (Further details of these and other computer 

codes used in this dissertation are given at the end of the References section.) 

 

There are two short timescale species, known as the diurnal and semi-diurnal species. The 

diurnal species of the tidal potential consists of the term: 
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Here, the presence of the earth rotation term cos(Z) means that a short timescale diurnal 

oscillation interacts with the long timescale changes in rB(t) and d(t). It is helpful to think of 

the diurnal species as being a diurnal oscillation (cos(Z)) whose amplitude is modulated over 

the long timescale by the declinational term sin(2d). (The changes in distance (rB(t)) have a 

similar but less significant effect.)  It follows that the diurnal part of the tidal potential is 

greatest when the declination of the tide-raising body is greatest (Section 2.3.2).  

 

Finally, the semi-diurnal species of the tidal potential consists of the term: 
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The semi-diurnal species can be considered to be a semi-diurnal oscillation (cos(2Z)), whose 

amplitude is modulated over the long timescale by the declinational term cos2(d). Therefore, 

the semi-diurnal part of the tidal potential is greatest when the declination of the tide-raising 

body is zero (Section 2.3.2). 

2.3.2 Frequency Modulation by declinational changes 

The decomposition of the tidal potential into species (Section 2.3.1) is conceptually useful 

when considering tidal phenomena over a timescale of a few days. On such a timescale, 

changes in the distance and declination of a tide-raising body can give the tidal potential a 

non-stationary appearance (Figure 2.3). 

 

 In the example shown in Figure 2.4, the lunar declination (d) is zero approximately 11 days 

into the time interval (Figure 2.3). At this time, the semi-diurnal species (with its cos2(d) 

term) dominates over the diurnal species (with its sin(2d) term) in the tidal potential. 

Consequently, the tidal potential appears to be strongly semi-diurnal when viewed over the 

course of a few cycles at the centre of the observation period. However, at the beginning and 

end of the time interval, the lunar declination is large and the tidal potential has a dominantly 

diurnal appearance. The tidal potential as a whole can therefore be considered to be 

frequency-modulated by declinational changes. (In this example, attention has been focussed 

solely on the lunar declination because it varies appreciably over the course of 20 days. In 

principle, changes in solar declination have a similar effect. However, the period of change 

of solar declination is one year, and so the solar declination is therefore approximately 

constant.)  
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Figure 2.3: ‘Frequency Modulation’ of the tidal potential due to changes in lunar

declination (d). The absolute value of the lunar declination (|d|) is

plotted over a period of 20 days in March 1990. Also shown is the

tidal potential, W, at (45°N, 0°E) over the same time interval. When

the lunar declination is zero, the tidal potential is dominated by the

semi-diurnal species. Conversely, the diurnal species dominates when

the lunar declination is large. Data calculated using ETGTAB. 

 

This phenomenon has important consequences for the interpretation of tidal data from 

hydrothermal systems. For example, if an observed seafloor time-series spans no more than a 

few days, it would be unwise to conclude that a frequency spectrum obtained from the 

dataset were typical. A dataset collected the following week might have a markedly different 

spectrum simply because of changes in lunar declination.  

 

It is reasonable to suppose that any tidal signal will display some degree of diurnal/semi-

diurnal frequency modulation, and it is of interest to see how such modulation correlates 

with the well-known astronomical forcing. For example, an observed tidal signal might 

display its greatest semi-diurnal character a few days after the lunar declination is zero. This 

would be evidence for a considerable time lag in the physical mechanism by which the tidal 

potential gave rise to the tidal signal. 

2.3.3 Amplitude Modulation by lunar phase – spring and neap tides 
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Figure 2.4: The positions of the sun (S) and moon (M) projected onto the ecliptic

plane. The point O is the centre of the Earth. The moon and sun have

ecliptic longitudes x and x’ respectively, measured positive eastwards

from the vernal equinox, V. A lunar phase parameter (ΦL) can be

defined by ΦL=|cos(x-x’)|. 

For simplicity, the tidal potential due to a single tide-raising body is considered above 

(Section 2.3.1). However, the interaction of the lunar and solar tides creates an important 

phenomenon - the amplitude modulation of the tidal potential according to the phases of the 

moon (Doodson & Warburg, 1941).  

 

 

When the moon is new or full, the lunar and solar potentials are in phase and produce spring 

tides which exhibit a larger range than normal. At half-moon, the tidal potentials are out of 

phase and produce neap tides, with a smaller range than normal. For this reason it is useful to 

define a lunar phase parameter (ΦL) as a numerical measure of the phase of the moon.  

If x is the ecliptic longitude of the moon, and x’ is the ecliptic longitude of the sun (Figure 

2.4), then ΦL can be defined as follows: 

  ( )'cos xxL −=Φ               (2.10) 

Hence, the tidal potential displays spring tides at new and full moon when ΦL=1, and neap 

tides at half moon when ΦL=0. The interval between springs and neaps is about 7.38 days 

(Doodson & Warburg, 1941).  
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Figure 2.5: ‘Amplitude Modulation’ of the tidal potential and ocean tide due to

changes in the lunar phase parameter (ΦL) defined in the text, and in

Figure 2.4. (a) The tidal potential, W, at the TAG hydrothermal site

(26.13°N, 44.82°W). Time-series generated by the ETGTAB code. (b)

The ocean tide at the TAG hydrothermal site, generated by the CSR

code. 

 

It is important to stress that spring tides in the oceans may not occur at the same time as 

spring tides in the tidal potential. This effect is due to the finite hydrodynamic response time 

of the oceans. The time lag between ΦL=1 and oceanic spring tides is known as the age of the 

tide and varies with location. For example, the tides in British coastal waters generally have 

an age of about 1.5 days (Manual of Tidal Prediction, 1958). An example of the amplitude 

modulation caused by lunar phases is presented in Figure 2.5. Unless otherwise stated, the 

estimates of ocean tide presented in this dissertation have been made using the CSR code, 

which is derived from satellite altimetry (Schrama & Ray, 1994). 

It is reasonable to assume that any tidal signals will display a springs/neaps cycle to some 

extent. Therefore, when analysing tidal behaviour in a dataset it is important to identify 

evidence of amplitude modulation, and to correlate this with the springs/neaps cycle in the 

local ocean tide and tidal potential. 

2.3.4 Decomposition into harmonic series 

In Sections 2.3.1 – 2.3.3, the tidal potential is viewed as a non-stationary mixture of diurnal 

and semi-diurnal oscillations. This non-stationarity is manifest as amplitude- and frequency 

modulation of the basic diurnal and semi-diurnal frequencies. However, when viewed over a 

much longer timescale (~1 year or more) tidal signals can be regarded as stationary 
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harmonic series. In this alternative viewpoint, a tidal signal is decomposed into cosine waves 

of constant amplitude and frequency.  

The relationship between the two viewpoints is exemplified by the following identity 

(Doodson & Warburg, 1941): 
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Equation (2.11) illustrates how the function f(t), defined by the product L(t)S(t), can be 

decomposed into the sum f1(t)+f2(t)+f3(t).  
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Figure 2.6: The interaction of periodic processes on long and short timescales,

illustrated by equation (2.11). (a) The function f(t), which can be

decomposed in two ways. (b) Decomposition into a product:

f(t)=L(t)·S(t). (c) Decomposition into a sum: f(t)=f1(t)+f2(t)+f3(t).

(For clarity, f2(t) and f3(t) have been offset on the y-axis.) 
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Suppose that Ω<<ω, and that 0<B<A. The function f(t) is then, in effect, a short timescale 

process, S(t), (e.g. the daily rotation of the earth), which amplitude-modulated by a long 

timescale process (L(t)) (e.g. monthly changes in lunar declination). Thus, when viewed over 

a timescale greater than ~1/Ω, f(t) is naturally interpreted as an oscillation of angular 

frequency ω, whose amplitude is not constant, but varies with angular frequency Ω (Figures 

2.6a,b). This viewpoint corresponds to the non-stationary species decomposition of Section 

2.3.1.  

By contrast, the decomposition f1(t)+f2(t)+f3(t) expresses f(t) as a sum of three harmonic 

terms, each of constant frequency and amplitude (Figure 2.6c).  

 

Thus, the modulation of a short timescale signal of angular frequency ω by a long timescale 

signal of angular frequency Ω produces a harmonic series of terms with frequencies ω, 

(ω+Ω), and (ω-Ω).  

 

This principle lies behind the decomposition of the tidal potential into harmonic components. 

The (well-known) long-period frequencies of lunar and solar motion combine with the 

diurnal and semi-diurnal Earth-rotation frequencies to produce a set of N tidal frequencies 

{ω1,…,ωN}. The number of frequencies in a particular decomposition (N) depends on the 

number of tide-raising bodies included, and the accuracy with which their motions are 

considered. For example, Doodson (1921) has N=378, Cartwright & Edden (1973) have 

N=505, and Tamura (1987) has N=1200. A typical tidal spectrum is shown in Figure 2.7. 
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Figure 2.7: A typical tidal power spectrum, calculated from the harmonic

constants used in the creation of the time-series in Figure 2.3. The

power Hj
2 in each harmonic line is plotted as a function of frequency

ωj/2π. Note the logarithmic scale on the y-axis. Data produced using

ETGTAB. 
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After harmonic decomposition, the tidal potential W2 (at some fixed point on the Earth’s 

surface) is written as a cosine series: 

               (2.12) 
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Given a set of tidal frequencies {ω1,…,ωN}, the information in the tidal signal W2(t) is 

completely described by the set of N amplitudes {H1,…,HN} and the set of N phase-lags 

{g1,…,gN}.  

The same information can be expressed in complex number notation as follows: 
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Here, the signal is completely described by the set of N complex numbers {A1,…,AN}.  

 

The amplitude/phase notation and the real/imaginary notation are linked according to: 
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The frequency spectrum of W2(t) is obtained by graphing the power (Hj
2=|Aj|2) in each 

spectral line against its frequency (ωj/2π). The spectrum in Figure 2.7 is typical and displays 

the features common to most tidal signals. The spectral lines are clustered into three bands 

corresponding to the three species of Section 2.3.1 – long-period, diurnal and semi-diurnal. 

Within each band, certain frequencies tend to contain a greater proportion of the power, and 

have been assigned names (Doodson & Warburg, 1941). Table 2.1 lists the principal tidal 

frequencies, along with their names (Doodson & Warburg, 1941). 

 

In the diurnal band, the most significant spectral lines of the tidal potential are K1, O1, P1 

and Q1; and in the semi-diurnal band, they are M2, S2, N2 and K2 (Schwiderski, 1980). The 

M2, or ‘principal lunar’ component, with a period of 12.42 hours, is usually the most 

significant component of a tidal signal. For this reason, initial testing of a dataset should 

involve identification of significant power at ~1.932 cpd which is characteristic of all tidal 

signals. 

Among the harmonic components of the long-period band is a fortnightly component, Mf. It 

is very important to distinguish conceptually between this fortnightly harmonic component 

and fortnightly modulations. For example, the springs/neaps cycle is a prominent tidal 

phenomenon with a period of ~14 days. However, it is caused by the beating of the M2 and 
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S2 components, and not by the Mf component which has an amplitude typically less than 5% 

of the M2 component (Schwiderski, 1980).  

 

Consequently, when looking for long-period phenomena in hydrothermal datasets it is more 

practical to identify long-period modulations than the long-period harmonic components 

themselves. 

 
name f (cpd) T (days) T (hrs) name f (cpd) T (days) T (hrs) 

M0S0 0.0000 - - J1 1.0390 0.9624 23.0985 

Sa 0.0027 365.2301 8765.5223 SO1 1.0705 0.9342 22.4202 

Ssa 0.0055 182.6150 4382.7611 OO1 1.0759 0.9294 22.3061 

STA 0.0082 121.7532 2922.0779 V1 1.1122 0.8991 21.5782 

MSm 0.0314 31.8120 763.4883 3N2 1.8234 0.5484 13.1622 

Mm 0.0363 27.5548 661.3149 ε2 1.8283 0.5470 13.1273 

MSf 0.0677 14.7652 354.3656 2N2 1.8597 0.5377 12.9054 

Mf 0.0732 13.6608 327.8599 µ2 1.8645 0.5363 12.8718 

MSTm 0.1046 9.5569 229.3651 N2 1.8960 0.5274 12.6583 

MTm 0.1095 9.1329 219.1901 ν2 1.9008 0.5261 12.6260 

MSQm 0.1409 7.0958 170.2989 γ2 1.9274 0.5188 12.4519 

2Q1 0.8570 1.1669 28.0062 α2 1.9295 0.5183 12.4382 

σ1 0.8618 1.1603 27.8484 M2 1.9323 0.5175 12.4206 

Q1 0.8932 1.1195 26.8684 β2 1.9350 0.5168 12.4030 

ρ1 0.8981 1.1135 26.7231 δ2 1.9377 0.5161 12.3855 

O1 0.9295 1.0758 25.8193 λ2 1.9637 0.5092 12.2218 

τ1 0.9350 1.0695 25.6681 L2 1.9686 0.5080 12.1916 

M1 0.9664 1.0347 24.8333 2T2 1.9945 0.5014 12.0329 

χ1 0.9713 1.0295 24.7091 T2 1.9973 0.5007 12.0165 

π1 0.9945 1.0055 24.1321 S2 2.0000 0.5000 12.0000 

P1 0.9973 1.0027 24.0659 R2 2.0027 0.4993 11.9836 

S1 1.0000 1.0000 24.0000 K2 2.0055 0.4986 11.9672 

K1 1.0027 0.9973 23.9345 ξ2 2.0369 0.4909 11.7825 

ψ1 1.0055 0.9946 23.8693 η2 2.0418 0.4898 11.7545 

φ1 1.0082 0.9919 23.8045 M3 2.8984 0.3450 8.2804 

θ1 1.0342 0.9670 23.2070 M4 3.8645 0.2588 6.2103 

 

Table 2.1: The principal harmonic components of the tidal potential, derived from the 

ETGTAB code, listed in order of increasing frequency (f). The corresponding 

period (T=1/f) is also shown. 
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This concept can cause much confusion. For example, Rinehart (1972a, 1972b) attempted to 

correlate geyser activity with ‘the 18.6-year tidal component’. In reality, his study compared 

geyser activity with the slowly changing amplitude envelope of the tidal oscillations. 

 

It should be stressed that the fixed set of tidal angular frequencies in a particular harmonic 

decomposition ({ω1,…,ωN}) is derived directly from tidal potential – the particular, 

accurately known signal which gives rise to all tidal phenomena. The harmonic 

decomposition of other tidal signals depends on the assumption that they contain power at 

precisely the same set of frequencies. Under this assumption, the arbitrary tidal signal ζ(t) 

would be written: 

                (2.15) 
( ) ( )jj

N

j
j gtHt −= ∑

=

ωζ cos
1

Thus, all of the information in the signal is expressed by the set of N amplitudes {H1,…,HN} 

and the set of N phase-lags {g1,…,gN}, collectively known as the harmonic constants of the 

signal. Unfortunately, for real data, it is rarely possible to determine accurate estimates for 

all of these harmonic constants. Even if the dataset is free from errors and noise, its finite 

length will limit the ability to discriminate between individual spectral lines. From Fourier 

transform theory, it is only possible to separate harmonic components at angular frequencies 

ω1 and ω2 in a time-series whose length exceeds 2π/(ω1-ω2) (Press et al., 1986). For 

example, to separate the M2 component (period 12.42 hours) from the S2 component (period 

12 hours) requires a time-series of at least 14.8 days duration. The longer the time interval 

spanned by the dataset the more spectral lines can be extracted. However, to resolve all of 

the spectral lines in a standard harmonic decomposition requires an impractically long time-

series of 18.6 years duration, which is the period of revolution of the moon’s nodes 

(Doodson & Warburg, 1941). 

 

The impossibility of resolving all spectral lines from a time-limited dataset renders the 

classical harmonic decomposition inappropriate for the short, noisy datasets obtained from 

hydrothermal systems. Consequently, it is important to develop methods of extracting the 

maximum amount of tidal information from limited datasets. This process is discussed in 

Chapter 3.  
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2.4 The Solid Tide 

2.4.1 Definition of the Solid Tide 

One immediate consequence of the tidal potential is the solid tide, sometimes known as the 

earth tide. This is defined as the flexing of the solid earth due to the direct influence of the 

tide-generating force. Of course, the presence of oceans creates an additional tidal strain, due 

to the changing pressure field which the oceans exert on the seafloor. However, the term 

tidal loading is reserved for the latter mechanism and it is considered separately, in Section 

2.5.4. 

2.4.2 The nature of the Solid Tide 

It can be shown (Bredehoeft, 1967; Melchior, 1983) that the vertical displacement of the 

Earth’s surface due to the solid tide is:  

Errs W
g
h

=
= 2ζ

                (2.16) 

Here, h is a ‘Love number’ derived from the elastic properties of the Earth and g is 

gravitational acceleration. 

Furthermore, the volumetric dilatation of the crust at the Earth’s surface, due to the solid 

tide, is given by: 
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W
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              (2.17) 

where ν is a Poisson’s ratio, rE is the radius of the Earth, g is gravitational acceleration and h 

and l are Love numbers.  

The values quoted by Bredehoeft (1967): ν=0.25, h=0.60 and l=0.07, give: 

 Err
E

W
gr =

≈ 22
1ε

               (2.18) 

This allows two important conclusions to be drawn. Firstly, the displacements and strains of 

the solid tide are exactly proportional to, and in phase with, the tidal potential. Secondly, an 

estimate can be made of the magnitude of the crustal strains due to the solid tide. Oscillations 

in the tidal potential, W2, have magnitude ~3 m2s-2 (Figure 2.3). Using g ~ 9.8 ms-2 and rE ~ 

6.4 · 106 m suggests that the strain, ε, should have magnitude ~2.4 · 10-8. Therefore, the solid 

tide can be expected to produce strain values of the order of a few tens of nanostrain. 

Although very small, these strain values are sufficient to cause measurable fluctuation of the 

water level in wells (Bredehoeft, 1967; Marine, 1975, Rojstaczer & Agnew, 1989). 
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Furthermore, there is some evidence that the solid tide may influence the periodicity of 

geysers (Ingebritsen & Rojstaczer, 1993; Ingebritsen & Rojstaczer, 1996). It would therefore 

seem plausible - a priori - that crustal strains created by the solid tide might have an 

important effect on seafloor hydrothermal systems. 

It is important to note that this theory considers the response of the whole Earth to the tide-

generating force (Bredehoeft, 1967). The theory does account for changes in the elastic 

properties of the Earth with depth, but it does not allow for any localised inhomogeneities 

which might complicate the local strain response. 

It is possible to predict the solid tide for any point on the Earth’s surface, given values for the 

Love numbers and Poisson’s ratio, since it is proportional to the tidal potential. There are 

several publicly available codes which perform this calculation, including ETGTAB (H.-G. 

Wenzel, pers. comm., 1997), and the SPOTL suite of programs (Agnew, 1997)  

2.5 The Ocean Tide 

2.5.1 Definition of the Ocean Tide 

The ocean tide at any particular place (ζO(t)) can be defined as the vertical deviation of the 

sea-surface from its average position due to tidal effects. 

2.5.2 The Equilibrium Tide 

The equilibrium tide is the ocean tide which would occur on Earth, if two highly idealised 

conditions were met (Doodson & Warburg, 1941). These conditions are: 

(1) There is a single ocean, of constant mean depth, covering the entire globe. 

(2) The surface of this ocean achieves instant equilibrium with the tide-raising 

force. In other words, it is assumed that the ocean surface is always a potential 

surface, positioned perpendicular to the local effective gravity. 

Each of these assumptions represents a considerable departure from the truth, and therefore 

the equilibrium tide is very different to the true ocean tide in both amplitude and phase.  

It can be shown (Doodson & Warburg, 1941) that the equilibrium tide (ζeq(t)) is simply 

another scaled version of the tidal potential: 

Erreq W
g =

= 2
1ζ

               (2.19) 

The equilibrium tide is very simple to compute, and in the past it has been used as an 

estimate of the real ocean tide (Thomson et al., 1986). However, there is now such good 
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knowledge of the true ocean tide (Section 2.5.3), that there is no longer any need to resort to 

the equilibrium tide.  

2.5.3 The Ocean Tide 

The real ocean tide observed on Earth is considerably more complex than the equilibrium 

tide (Schwiderski, 1980). There are many factors which contribute to this complexity, 

including the topography of the seafloor, the dynamical response of the oceans, friction, 

Coriolis forces and the presence of coastal boundaries.  Nonetheless, the global ocean tide is 

now known to considerable accuracy. Direct hydrodynamic modelling of the oceans (Le 

Prevost et al., 1994) and data from satellite altimetry (Schrama & Ray, 1994; Le Prevost et 

al., 1995) can be combined with data from deep-sea and coastal tide gauges (Egbert at al., 

1994) to produce cotidal maps for the principal tidal harmonic components. The maps 

reproduced in Figure 2.8 are typical, and present a useful summary of the magnitudes of the 

main tidal components in the world oceans. (Computer codes to predict the ocean tide at any 

location are currently available at http://podaac-www.jpl.nasa.gov/toppos/toppos_tides.html.) 

 

It is possible to draw some general conclusions about the nature of the ocean tide at different 

hydrothermal sites, from an analysis of global ocean tide maps (Figure 2.8). For each 

component of the ocean tide, Coriolis forces create amphidromic points - where the 

magnitude of the ocean tide is zero - in the open oceans. Amphidromic points are a graphic 

demonstration of the fact that tides in the middle of the ocean can be very different from 

those at the coast.  

 

For example, hydrothermal sites on the Mid-Atlantic Ridge, Atlantic Ocean, such as TAG 

(26.1°N, 44.8°W) and Lucky Strike (37.3°N, 32.3°W), are situated close to the North 

Atlantic amphidromes and experience much smaller ocean tides than ports on the Atlantic 

coasts of Europe. In contrast, on the Juan de Fuca Ridge, Pacific Ocean, the Endeavour 

hydrothermal field (47.8°N, 129.0°W) is situated close to the coast where the ocean tides are 

reasonably large. There is also a general difference in the spectral nature of the ocean tide in 

the Atlantic and Pacific Oceans. The natural frequency of oscillation of the Atlantic Ocean is 

close to two cycles per day. Consequently, the components of the ocean tide in the semi-

diurnal frequency band are amplified (Doodson & Warburg, 1941; Figure 2.8). Therefore, 

the ocean tides of the Atlantic are generally semi-diurnal. 
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Figure 2.8: (a) Cotidal maps for the semi-diurnal components M2 and S2.

Amplitudes are in cm. Cophase lines are drawn at intervals of 30°

with the thick line corresponding to the Greenwich passage of the tidal

potential. (From Le Prevost et al., 1994). 
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Figure 2.8: (b) Cotidal maps for the diurnal components K1 and O1. Note that

amplitudes are in mm, unlike those in Figure 2.8a. Cophase lines are

drawn at intervals of 30º with the thick line corresponding to the

Greenwich passage of the tidal potential. (From Le Prevost et al.,

1994). 
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Although the frequency modulation of Section 2.3.2 does occur, the small amplitude of the 

diurnal components renders it insignificant in many cases. In contrast, the Pacific Ocean 

does not display any particular semi-diurnal resonance. As a result, the diurnal components 

of the ocean tide are generally much larger in the Pacific Ocean than the Atlantic Ocean 

(Figure 2.8).   

Ideally, direct measurements of the ocean tide could be made, using seafloor pressure 

sensors, whenever time-series data are acquired from hydrothermal sites. Such sensors would 

record all changes in seafloor pressure including those which are not tidal in origin, such as 

the effects of atmospheric pressure and wind. However, where direct measurements are not 

available, computer simulations of the ocean tide provide a reasonable alternative.  

The ocean tides in the open ocean generally have an amplitude of ~1 m, and can be expected 

to influence hydrothermal systems by imposing a changing pressure field on the seafloor 

(Section 2.5.4) and by creating horizontal water motion across the seafloor (Section 2.6). 

2.5.4 The Load Tide 

The ocean tide (ζO(t)) (Section 2.5.3), creates a changing pressure field (ρ0gζO(t)) on the 

seafloor, where ρ0 is the average density of seawater. This generates additional strain and 

displacement in the Earth’s crust - known as the load tide - in addition to the solid tide of 

Section 2.4. The load tide at any point on the Earth’s surface is calculated by evaluating a 

convolution integral of the ocean tide with the appropriate Green’s function over the entire 

global seafloor (Longman, 1962, 1963; Farrell, 1972a, 1972b, 1973). Thus, the load tide at 

any point depends on the ocean tide for the whole globe. However, mid-ocean ridge 

hydrothermal systems are located on the seafloor where the convolution is overwhelmingly 

dominated by the local ocean tide (Francis & Mazzega, 1990). Therefore, it is an acceptable 

approximation to assume that load tides on the seafloor are in phase with, and proportional 

to, the local ocean tide.  

For a seawater density ρ0 ~ 103 kg.m-3, ocean tides of amplitude ~1 m will create an 

oscillating seafloor pressure field of amplitude ~104 Pa. Ingebritsen & Rojstaczer (1996) 

considered the crustal strain values expected in land-based hydrothermal systems. They 

compared the strain magnitude generated by the solid tide with that created by fluctuations in 

atmospheric pressure. Their argument can be adapted to the investigation of seafloor systems 

by considering the changing weight of the water column - rather than atmospheric pressure - 

as the source of the surface load to the crust. Ingebritsen & Rojstaczer (1996) assumed a 

typical rock compressibility of ~10-10 Pa-1, which would suggest that an ocean tide of ~1 m 

should produce crustal strains of magnitude ~10-6. This is two orders of magnitude greater 
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than the strains of magnitude ~10-8 which are expected to result from the solid tide (Section 

2.4). Consequently, it is to be expected that seafloor hydrothermal systems will suffer much 

more deformation from the load tide (which is proportional to the ocean tide) than from the 

solid tide (which is proportional to the tidal potential). This expectation is tested in Chapter 4 

by comparing hydrothermal time-series with both the local tidal potential and the local ocean 

tide. 

2.6 Tidal Streams 

The vertical motion of the sea-surface, defined as the ocean tide (ζO(t)), is accompanied by 

horizontal movement of water within the oceans, which is termed tidal streams (Doodson & 

Warburg, 1941). Ideally, current meter data would be collected at hydrothermal vent sites 

concurrently with measurements of temperature, flow rate, pressure and chemistry, but this 

has not always been possible. In the absence of direct current measurements it is necessary to 

estimate the tidal streams at hydrothermal vent sites using knowledge (or an estimate) of the 

ocean tide.  

 

For simplicity, the following sections will consider the tidal stream due to a single tidal 

component (e.g. the M2 component), of angular frequency ω. The aim is to summarise the 

inferences that can be made about tidal streams on the seafloor, given an estimate of the local 

ocean tide. 

2.6.1 Rectilinear travelling waves in the open oceans 

In the open oceans the sea-surface displacement due to a particular tidal component takes the 

form of a travelling wave, progressing rotationally about an amphidrome as illustrated on 

global co-tidal charts (Figure 2.8). However, for the purposes of this discussion it is 

sufficient to consider a surface wave in two dimensions (Figure 2.9).  

 

If the wave travels along the x-axis with amplitude A, the displacement of the water surface 

ζ(x,t) is given by: 

  ( )tkxA ωζ −= cos               (2.20) 

The dispersion relation is (Lamb, 1932): 

                (2.21) ( )khgk tanh2 =ω

and the horizontal and vertical components of the water velocity are: 
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Figure 2.9: The ocean tide (ζ(x,t)) in water of depth h results in a wave of

wavenumber k. As described in the text, the nature of the induced tidal

stream (u,w) depends on whether this is a standing wave or a

travelling wave. The velocity is u(x,z,t) in the x-direction, and w(x,z,t)

in the z-direction. 

 

In the open oceans, h is typically ~1 km, while the wavelength 2π/k is typically ~102 – 104 

km. Hence, kh<<1, and so sinh(kh)≈kh and tanh(kh)≈kh. Under this shallow water 

approximation, it follows that the horizontal stream, u, on the ocean floor z = -h, is an 

oscillation of magnitude: 

  ( ) h
gA

kh
A

≈
sinh

ω

              (2.24) 

Thus, for a typical ocean tide of amplitude A ≈ 1 m, in an ocean of depth h ≈ 1000 m, with g 

≈ 10 m.s-2, the tidal streams would have a magnitude |u| ~ 0.1 m.s-1. The surface 

displacement (ζ) and the horizontal velocity (u) are both dependent on time via the term 

cos(kx-ωt). Therefore peak tidal streams on the ocean floor coincide with low and high tide. 

This result seems to contradict common experience that slack water occurs at high and low 

tide, and that peak tidal streams coincide with half-tide. The apparent confusion results 

because common experience is based on the standing waves found in small gulfs and 
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estuaries rather than the travelling waves found in the open oceans (Doodson & Warburg, 

1941).  

2.6.2 Rectilinear standing waves in small gulfs 

In a short gulf, for example the Gulf of California (Little et al., 1988), the surface 

displacement (ζ) due to a particular tidal component often takes the form of a standing wave. 

The pattern of cophase lines on a cotidal chart (Figure 2.8) reveals whether the surface wave 

generated by a particular tidal component is a standing wave or a travelling wave. A standing 

wave of amplitude A can be written as the sum of two travelling waves: 

  
( ) ( ) ( ) ( tkxAtkxtkxA ωωωζ coscoscos

2
1cos

2
1

=



 ++−= )

         (2.25) 

By linearity, and using the theory of Section 2.6.1, it follows that the horizontal component 

of velocity (u) is given by:  
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khkzAu ωω sinsin
sinh

cosh +
= )

            (2.26) 

Thus, assuming kh<<1, the magnitude of the streams on the seafloor is the same as for 

travelling waves: 

( ) h
gA

kh
A

≈
sinh

ω

              (2.27) 

However, the phase relationship between the ocean tide and tidal streams is very different. 

The surface displacement (ζ) depends on time via the term cos(ωt), but the horizontal 

velocity (u) depends on time via the term sin(ωt). It therefore follows, in agreement with 

common experience, that peak streams occur at half-tide for standing waves. The interaction 

of standing and travelling waves in the Gulf of California is discussed in greater detail in 

Chapter 4. 

2.6.3 The frequency spectrum of a rectilinear tidal stream 

Consider the horizontal velocity (u) of a rectilinear tidal stream along the x-axis, due to a 

single tidal component of angular frequency ω, so that u~sin(ωt). The rate of heat transfer 

from the seafloor to the ocean is proportional to the speed (|u|) of the stream. In contrast, the 

pressure drop due to flow over a hydrothermal edifice, caused by the Bernoulli effect, is 

proportional to the square of the speed (|u|2) (Schultz & Elderfield, 1997). Both of these 

processes might be expected to affect hydrothermal systems, and it is useful to consider the 

expected spectral nature of signals which depend on them. The square of the speed of the 

tidal stream is:  
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Hence, any process which depends linearly on the Bernoulli effect will have all power 

concentrated at angular frequency 2ω, or twice the angular frequency of the surface 

displacement.   

In contrast, the speed of the tidal stream is: 
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         (2.29) 

Hence, any physical process which depends linearly on the rate of heat transfer from the 

seafloor to the ocean will have spectral power at all of the angular frequencies {2ω, 4ω, 

6ω,…}. 

Thus, careful examination of the power spectrum of a seafloor tidal signal can be used to 

distinguish |u|-dependent processes from |u|2-dependent processes. However, it must be 

stressed that the situation is considerably more complicated if the effects of more than one 

tidal component are significant.  

2.6.4 Rotating tidal streams 

In many cases, the seafloor tidal streams associated with a particular tidal component are 

rotating rather than rectilinear (Doodson & Warburg, 1941). In such a case, the vector 

representing the tidal stream in the horizontal plane traces an elliptical path during each tidal 

period. If the x- and y-axes are placed along the major- and minor-axes of this ellipse, then 

the components of the tidal stream velocity are: 

  ( tau )ωcos=                (2.30) 

  ( tbv )ωsin=                (2.31) 

It then follows that the square of the speed of the tidal stream is given by: 
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           (2.32) 

which has all power concentrated at angular frequency 2ω, as for the rectilinear case 

(equation (2.28)). 

In contrast, the speed of the stream is given by: 

  
( ) ( ) ( )tbabavu ω2cos

2
11 222222 −++=+

2           (2.33) 

The exact Fourier series representation of this expression is not known, but it is clear that it 

must contain spectral lines at the angular frequencies {2ω, 4ω, 6ω,…} in the same manner as 

 



Chapter 2: The nature of tidal signals 32

equation (2.29). Hence, the same general conclusions can be drawn for the case of rotating 

streams as for rectilinear streams. In principle, |u|-dependent processes could be 

distinguished from |u|2-dependent processes by examining the spectral power at the even 

harmonics of the fundamental frequency. 

2.7 Conclusions 

A tidal signal is defined to be the part of a time-series which is caused by the tidal potential. 

Several first order tidal signals have been described – the solid tide, ocean tide, load tide and 

tidal streams, and their potential influence on hydrothermal systems has been discussed. 

 

The solid tide is in phase with the tidal potential and easily predictable using public domain 

computer codes. It is expected to lead to crustal strains of magnitude ~10-8 (i.e. tens of 

nanostrain).  

 

The global ocean tide is extremely complex, but a combination of satellite altimetry, 

hydrodynamic modelling and pressure gauge data means that it is known to considerable 

accuracy in most of the world’s oceans. There are public domain computer codes which 

predict the ocean tide at any location. Ocean tides generally have an amplitude of ~1 m. The 

ocean tide creates a changing pressure field on the seafloor which gives rise to crustal strain 

– the load tide.  

 

To a reasonable approximation, the load tide at a point on the seafloor is in phase with, and 

proportional to, the local ocean tide. The crustal strains due to the load tide can be as large as 

10-6, two orders of magnitude greater than the solid tide. It is therefore expected that the 

ocean tide will have a greater influence on hydrothermal systems than the solid tide. This 

expectation is tested in Chapter 4. 

 

The tidal streams which accompany the ocean tide typically have a magnitude ~0.1 m.s-1 in 

the open ocean. If tidal streams influence hydrothermal systems, it might be informative to 

examine the power spectrum of hydrothermal tidal signals. A spectrum containing the 4th and 

6th harmonics of the tidal frequencies would suggest that the hydrothermal system is 

influenced by the speed of the water (via heat transfer from the seafloor) rather than the 

speed squared (via the Bernoulli effect).  
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The nature of the tidal potential has been examined in some detail, as it is expected that tidal 

signals in hydrothermal systems will display similar behaviour. When considered over a long 

time interval (perhaps a year or more), it is reasonable to view tidal signals in terms of their 

stationary harmonic decomposition, or Fourier series. However, the number of spectral lines 

which can be resolved from a short dataset (of a few days to a few months) is severely 

limited. Accordingly, when considering tidal phenomena over the course of a few semi-

diurnal cycles it is conceptually useful to view the tidal potential as a mix of diurnal and 

semi-diurnal frequencies which is frequency- and amplitude-modulated by lunar and solar 

motions. 

 

The tidal potential can be considered to be amplitude-modulated by the phases of the moon, 

and frequency-modulated by the lunar and solar declinations. It is informative to look for 

similar behaviour in time-series obtained from hydrothermal systems (Chapter 4). The 

astronomical positions of the sun and moon are accurately known, and are expected to 

influence all tidal signals in a similar way. Consequently, it is efficient to use this 

astronomical knowledge to develop data analysis techniques which are specifically designed 

for use with tidal time-series. Chapter 3 is concerned with the development of these 

techniques. 
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