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Chapter 3: The analysis of tidal data 

 
3.1 Introduction 
Chapter 2, above, is devoted to a discussion of the tidal potential and its immediate 

consequences – the solid and ocean tides. These tidal signals can be considered to be the 

inputs to a physical system – a hydrothermal convection cell – whose outputs are the 

observed variations in effluent temperature, chemistry and flow rate. The input signals are 

easily predicted, and their characteristic features are discussed in detail in Chapter 2. It 

would be advantageous to have an equally precise knowledge of the measured output signals, 

but this is rarely possible. Collecting data on the seafloor is difficult and expensive, so the 

datasets are often limited in length to a few days or weeks. Furthermore, the resulting time-

series tend to be rather noisy. Consequently, the aim of this chapter is to compare the 

different methods of extracting information from a limited, imperfect hydrothermal time-

series.  

 

The analysis of tidal signals has been a subject of great interest for many years. Originally, 

the motivation was to establish the nature of the ocean tide at a particular port, to ensure the 

safety of shipping. The sea level in the port was measured with a tide-gauge over a period of 

time and a harmonic decomposition of the resulting time-series was used to extract the 

harmonic constants of the port. The number of harmonic constants which can be determined 

increases with the length of the time-series (Doodson & Warburg, 1941). Given suitable 

data, this method produces an accurate and theoretically sound description of oceanic tidal 

signals. Furthermore, it has successfully been applied to the study of earth tides, where the 

data to be analysed include time-series of gravity, strain and tilt (Melchior, 1983). 

 

It must be stressed, however, that traditional harmonic methods are ill suited to the analysis 

of hydrothermal time-series. The first reason for this is that data from the seafloor are 

constrained to span limited short time intervals. In contrast, land-based equipment such as 

tide gauges can obtain very long time-series at minimal cost. For example, Munk & 

Cartwright (1966) were able to analyse 19 years of tide observations in order to establish the 

harmonic constants of the ocean tide at Newlyn and Honolulu. The second obstacle to the 

application of harmonic methods is that hydrothermal time-series tend to be much noisier 
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than traditional tidal signals - such as those from tide-gauges or strain meters - which appear 

smooth in the time-domain. To a good approximation, these smooth tidal signals contain 

spectral power only at the tidal frequencies. A hydrothermal time-series, on the other hand, 

often has a significant amount of power in a smooth background spectrum, in addition to 

power in line components at the tidal frequencies. 

 

In summary, the task of extracting tidal information from hydrothermal time-series is made 

difficult by the fact that the datasets tend to be (1) short and (2) noisy. The implications of 

these problems are discussed in this chapter by dividing the techniques of time-series 

analysis into two classes – parametric and non-parametric. 

 

Among non-parametric techniques, the periodogram spectral estimator has been widely used 

in the interpretation of hydrothermal time-series despite the fact that it is demonstrably ill 

suited to short and noisy data.  The multiple window method (Thomson, 1982) is much 

better suited to the problem, and is recommended as the best non-parametric technique for 

hydrothermal time-series. The MWPS code which implements this technique (A. Chave, 

pers. comm., 1999) is applied to hydrothermal time-series data in Chapter 4. 

 

Among parametric techniques, the traditional Harmonic Method is of limited use with a short 

time-series, and it is recommended that the Admiralty Method (Admiralty Tidal Handbook, 

No. 3) be used in its place. Furthermore, to combat the problems of noise, the Admiralty 

Method can be made more robust (Chave et al., 1987), and combined with a technique which 

removes drift from the data signal (Tamura et al., 1991). The subsequent hybrid technique is 

recommended as the optimal parametric technique for extracting information from 

hydrothermal time-series. This technique has been implemented in the new computer code 

HYBRID. It is applied to hydrothermal time-series data in Chapter 4.  

3.2 Non-parametric analysis 

Many hydrothermal time-series clearly have the appearance of tidal signals when viewed in 

the time-domain because they display diurnal and semi-diurnal periodicity (Chapter 4). 

However, it should not be assumed that a signal is tidal without further supporting evidence. 

Consequently, the first step in the examination of a time-series should be an impartial, non-

parametric analysis of the data, in which the prejudice of the analyst plays no part. An 

attempt to fit the data with a parametric model should only be made if evidence of tidal 

modulation has previously been uncovered by a non-parametric analysis.  
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A hydrothermal time-series can be considered to be a finite sample from a stationary process. 

The problem is then to make an estimate of the power spectrum of this process, using the 

information from the finite dataset. It must be stressed that the true power spectrum of the 

process can never be deduced from a finite amount of data (Thomson, 1982). However, the 

data can be used to construct several different estimates of the true power spectrum (Section 

3.2.1). 

 

Once an estimate of the power spectrum has been made, it can be examined to see if there is 

evidence of significant power at the tidal frequencies. The principal components of the tidal 

potential are M2 (period 12.42 hours), S2 (period 12 hours), K1 (period 23.94 hours) and O1 

(period 25.82 hours) (Table 2.1). It is likely that any tidal signal has significant spectral 

power at these frequencies. In most tidal signals the M2 component dominates (Schwiderski, 

1980). Consequently, an initial test of whether a signal is influenced by the tides is simply to 

see if it has significant spectral power at ~1.93 cpd (equivalent to a period of ~12.42 hours).   

 

It must be stressed that the presence of spectral power at ~1.93 cpd does not prove that a 

time-series is tidally modulated. It may be that there is some other physical process – entirely 

independent of the moon - which causes modulation at this frequency. For the purposes of 

this dissertation, however, it is supposed that this is not the case. Consequently it is assumed 

that all signals whose spectra are correlated with tidal processes are in fact caused by tidal 

processes.   

3.2.1 Simple Fourier transform methods 

3.2.1.1 The periodogram 

The simplest spectral estimate is the periodogram, which is based on the discrete Fourier 

transform (Press et al., 1986). Given a time-series dataset {x0,…,xN-1}, the periodogram 

estimate ŜP(f) of the power at frequency f is: 
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Normally, this spectral estimate is made at the discrete set of frequencies {fj=j/(N∆t)}, where 

∆t is the sampling interval between successive data-points in the time-domain, and j lies in 

the range {-N/2,…,0,…,N/2}. (It is assumed, for convenience, that N is even.) Unfortunately, 

the periodogram ŜP(f) is not a good estimator of the true spectrum S(f).  

The Fejer kernel KF(f) is defined by: 

 



Chapter 3: The analysis of tidal data 37

  ( ) ( )
( )

2

2 sin
sin1









=

Nf
f

N
fK F π

π                 (3.2) 

It can be shown that the periodogram estimate ŜP(f) is equal to the convolution of the true 

spectrum S(f) with the Fejer kernel KF(f) as follows: 
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Consequently, the periodogram estimate ŜP(fj) of the power at frequency fj is a weighted 

average of the true power at all other frequencies. For this reason, the periodogram is said to 

be biased by spectral leakage.  

 

3.2.1.2 Local and broadband bias 

The bias can be divided into two parts by defining a bandwidth W in the frequency domain. 

Leakage from frequencies in the range (fj-W,fj+W) is termed local bias, while leakage from 

the other more distant frequencies is termed broadband bias. The bandwidth can be 

expressed in non-dimensional form, as the time-bandwidth product NW∆t. This is often 

chosen to be an integer, in which case it represents the number of frequency bins, on either 

side of fj, which contribute to the local bias in the estimate at frequency fj. Consequently the 

local bias in the estimate at fj consists of the spectral leakage from the frequencies {fj-

NW∆t,…,fj+NW∆t} (Thomson, 1982). 

 

3.2.1.3 The windowed periodogram 

The periodogram estimate of equation (3.3) suffers very badly from broad band bias, because 

the side-lobes of the Fejer kernel fall away slowly (equation (3.2)). The problem can be 

addressed by multiplying the dataset {x0,…,xN-1} by a data window {w0,…,wN-1} before 

performing the Fourier transformation (Press et al., 1986). This produces a spectral estimate 

known as the windowed periodogram estimate ŜWP(f), defined by:  
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In this case, the estimate ŜWP(f) is the convolution of the true spectrum S(f) with a spectral 

window WS(f): 
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The data window {w0,…,wN-1} is usually normalised so that: 
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It then follows that the spectral window WS(f) is given by: 
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Many data windows are in common use, and the choice of a particular data-window is made 

according to the desired bias properties of its spectral window WS(f). 

3.2.1.4 Discrete prolate spheroidal sequences 

A family of data windows known as the discrete prolate spheroidal sequences (or DPSS’s) is 

of particular interest. Given a choice of the time-bandwidth product (NW∆t) it is possible to 

define an ordered set of N DPSS’s {{vn
(0)},…,{vn

(N-1)}} (Thomson, 1982). For a particular 

value of the time-bandwidth product (NW∆t), the first DPSS ({vn
(0)}) can be shown to have 

the smallest local bias of all possible data windows (Slepian, 1978). 

This optimality of the DPSS’s - in particular the first such window {vn
(0)} - makes them a 

natural choice as the data windows for use in windowed periodograms. The choice of time-

bandwidth product should be made individually for each problem, by weighing up the likely 

effects of local and broad-band bias and the desired resolution of the spectral estimate. 

The preceding remarks have important consequences for the analysis of tidal signals from 

the noisy, short datasets which are obtained at hydrothermal systems. The true spectrum of 

the tidal potential is known to consist of a large number of closely-spaced harmonic lines, 

and it is expected that all tidal signals will have similar line components in their spectra, in 

addition to the background noise from other processes. When spectral estimates are made, 

the large concentrations of power in the harmonic lines will tend to leak into adjacent 

frequencies, making it difficult to distinguish individual lines. The problem gets worse as the 

time-interval spanned by the dataset ((N-1)∆t) decreases, because the separation between 

adjacent frequency bins is 1/(N∆t). For example, a dataset spanning a time-interval of 14 

days gives a frequency bin separation of ~0.07 cpd. The set of tidal harmonic lines in the 

semi-diurnal frequency band covers a bandwidth of about ~0.3 cpd and would therefore 

contain only 4 frequency bins. This is clearly insufficient to resolve the location of a useful 

number of harmonic lines (Figure 2.7). 
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The bias problems of the unwindowed periodogram (equation (3.1)) are severe, and it should 

not be used in tidal analysis. Nonetheless, many studies of hydrothermal tidal signals contain 

little or no discussion of the spectral estimators which are employed, and it is quite possible 

that they rely on unwindowed periodograms (Johnson & Tunnicliffe, 1985; Little et al., 

1988; Chevaldonné et al., 1991; Johnson et al., 1994; Copley et al., 1999). Windowed 

periodograms are an improvement, and a DPSS should be used as the data window to 

minimise bias, with the time-bandwidth product chosen to suit the particular problem. 

Even with a DPSS as the data window, the windowed periodogram estimate (equation (3.4)) 

is not optimal for application to hydrothermal time-series. Periodogram estimates are not 

statistically efficient, in the sense that the variance of the estimate does not decrease as the 

number of data-points (N) increases. The two traditional methods of countering this problem 

are band-averaging and section-averaging (Press et al., 1986; Chave et al., 1987), but both 

have the undesirable side effect of reducing resolution in the frequency domain. This can ill 

be afforded in the analysis of short tidal signals. 

3.2.1.5 Band-averaging 

In band-averaging, a windowed periodogram estimate ŜWP(f) is smoothed in the frequency 

domain by taking its convolution with a suitable function K(f). Therefore the band-averaged 

spectral estimate ŜBA (f) is:  
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The convolution in equation (3.8) has the effect of smearing the power from tidal harmonic 

lines into neighbouring frequencies and therefore leads to a loss of resolution in the 

frequency domain. Consequently, band-averaging is not recommended for the analysis of 

hydrothermal time-series. 

3.2.1.6 Section-averaging 

In section averaging, the time-domain dataset {x0,…,xN-1} is split into M subsections, which 

may overlap with each other. For each section m, a windowed periodogram is used to 

produce a spectral estimate Ŝm(f). The section-averaged spectrum ŜSA(f) is then calculated by 

taking an average of the spectral estimates obtained from each section. The averaging 

process can be done in several ways (Chave et al., 1987), but the most obvious method is 

simply to take the arithmetic mean:   
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Regardless of the details of the averaging process, this approach inevitably reduces 

resolution in the frequency domain, because the individual spectra (Ŝm(f)) are obtained from 

subsections which are shorter than the original time-series. Consequently, section-averaging 

is not recommended for the spectral analysis of hydrothermal time-series. 

3.2.1.7 Conclusion 

In summary, methods based on the periodogram suffer from severe problems as means of 

extracting tidal information from hydrothermal time-series, although they have been used 

extensively for this purpose. The unwindowed periodogram of equation (3.3) is badly biased, 

while the windowed periodogram of equation (3.4) must be smoothed, by band- or section-

averaging, to make it reasonably efficient. However, both of these methods lead to reduced 

resolution in the frequency domain, making it difficult to separate individual line 

components. It is strongly recommended that the periodogram methods of Section 3.2.1 

should not be used to analyse hydrothermal time-series. 

3.2.2 Multiple Window Power Spectra 

The optimal non-parametric technique for analysing hydrothermal time-series is arguably the 

multiple window (or multiple taper) method of Thomson (1982), which makes use of the 

DPSS data windows discussed in Section 3.2.1. A brief synopsis of the method is provided 

here. 

 

The first step is to choose a value for the time-bandwidth product NW∆t. The choice is 

influenced by the length of the time-series (N-1)∆t and by the desired accuracy of the 

spectral estimate in the frequency domain. Inherent in this choice is a trade-off between 

efficiency and spectral resolution. A small time-bandwidth product allows closely spaced 

lines to be separated, but at the cost of low efficiency. Conversely, a large time-bandwidth 

product increases efficiency at the cost of smearing adjacent line components together. In the 

case of hydrothermal time-series, it is helpful that the spacing of the tidal harmonic lines in 

the frequency domain is known a priori. 

 

As discussed in Section 3.2.1, a particular choice of time-bandwidth product NW∆t defines a 

set of DPSS’s {{vn
(0)},…,{vn

(N-1)}}. In the multiple window method, each DPSS is used as 

the data window in a separate windowed periodogram of the entire time-series. This creates a 
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set of N separate spectral estimates {Ŝ0(f),…,ŜN-1(f)} which are known as the eigenspectra. 

The multiple window spectral estimate ŜMWPS(f) is then obtained by taking a weighted 

average of the eigenspectra at each frequency. It can be shown that it is acceptable to restrict 

attention solely to the first K=2NW∆t eigenspectra (Thomson, 1982). Consequently, ŜMWPS(f) 

is given by an expression of the form: 
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The weights dk(f) are calculated from the data in a manner described by Thomson (1982). It 

is important to note that this method relies on windowed periodograms of the entire data 

sequence, and does not perform any convolutional smoothing in the frequency domain. Thus, 

unlike band- or section-averaging, it achieves statistical efficiency without sacrificing any 

spectral resolution. This is clearly desirable when seeking to identify closely spaced tidal 

harmonic lines in short time-series. 

3.2.2.1 Identification of line components 

The multiple window method is particularly well suited to tidal analysis as it incorporates an 

explicit procedure for the identification of significant line components in the spectrum. 

Firstly, the complex harmonic constants for the time-series are estimated, by regression over 

the eigenspectra, for each frequency bin (fj). It must then be decided whether the estimated 

power of the harmonic constants represents a statistically significant line component. To this 

end, an F-statistic is constructed for the estimated harmonic constants in each frequency bin. 

It can be shown that this statistic is distributed as F2,2K-2 for Gaussian data. Consequently, an 

unusually large value of the F-statistic is interpreted as evidence that there is a significant 

line component at the frequency under consideration. For a time-series of N data-points, 

Thomson (1982) suggests that the F-statistic should be considered significant if its value 

exceeds the 100*(N-1)/N percentage point of the F2,2K-2 distribution. In Chapter 4, this 

criterion is used to decide if line components in the spectrum are significant.  

 

Once the significant line components have been identified, a residual time-series is 

constructed by subtracting the signal generated by the significant line components from the 

original time-series. The power spectrum of the residual time-series is then calculated using 

the multiple window method. Of course, with the power in the significant line components 

removed from the residual signal, its spectrum is much less prone to distortion by spectral 

leakage. Finally, the power in the significant line components is added to the spectrum of the 

residual time-series to give the overall spectral estimate. 
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A computer code to perform these calculations, MWPS (A. Chave, pers. comm., 1999) is 

used for the non-parametric analysis of seafloor data in Chapter 4.  

 

From the point of view of hydrothermal time-series, the multiple window method offers 

reasonable solutions to the two key problems which afflict seafloor data - shortness and 

noisiness. Firstly, by retaining the highest possible resolution in the frequency domain, it 

makes maximum use of the limited length of the dataset, unlike the band- and section-

averaged periodogram methods. Secondly, by identifying significant line components, and 

removing them before calculating the background spectrum, it reduces the effect of spectral 

leakage from the powerful tidal harmonic lines into the surrounding spectrum.   

 

The multiple window method is very well suited to the analysis of data with a tidal 

component. It is therefore surprising, and disappointing, that it seems to have been used only 

once for this purpose (Thomson et al., 1986). Nonetheless, it is proposed here that it should 

be the non-parametric method of choice for all subsequent analysis of seafloor hydrothermal 

time-series. 

3.3 Parametric analysis 

Non-parametric analysis (Section 3.2) can be used to examine a time-series without 

prejudice as to its nature or cause. If non-parametric analysis suggests that the time-series 

may have a tidal component, the next step is to postulate a parametric model for the time-

series and estimate the values of the parameters. The underlying objective is to extract as 

much useful information from the data as possible, given the parametric form assumed for 

the data. The choice of a particular parametric model is made according to the expected 

structure of the time-series. It must be remembered, therefore, that each parametric model 

contains an implicit set of assumptions, or prejudices, about the nature of the time-series.  

 

The Harmonic Method (Section 3.3.1) relies on fewer assumptions than the Admiralty 

Method (Section 3.3.2). In a Harmonic Method decomposition, the sole assumption is that all 

tidal signals have spectral lines at the same discrete set of frequencies as the tidal potential. 

The disadvantage of the Harmonic Method is that a large number of harmonic constants must 

be estimated to yield a reasonably accurate description of the tidal signal. This requires a 

long time-series (~1 year or more) and so the Harmonic Method is unsuitable for the short 

time-series obtained at the seafloor. 
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In contrast, the Admiralty Method of Section 3.3.2 requires only 8 harmonic constants to 

describe a tidal signal, and the values of these parameters can be estimated from relatively 

short time-series (~7 days). However, these advantages come at the cost of making extra 

assumptions about the nature of tidal signals. In common with the Harmonic Method, it is 

assumed in the Admiralty Method that all tidal signals have harmonic lines at the same 

discrete set of tidal frequencies. In addition it is supposed that certain magnitude and phase 

relationships which hold between selected harmonic components of the tidal potential hold 

good for all other tidal signals. The Admiralty Method is very successful in describing the 

ocean tides in the world’s ports, which suggests that these assumptions are justified. 

 

The Bayesian method of drift removal, discussed in Section 3.3.3, relies on the assumption 

that the drift component of a time-series is smooth. It yields parameter estimates which are 

maximum likelihood estimates when the drift has a particular stochastic structure.   

 

Finally, the Hybrid Method of Section 3.3.4 combines the ideas of the earlier sections in a 

new computer code (HYBRID) designed for the parametric analysis of tidal signals. The 

code decomposes a time-domain dataset into subsections and analyses each subsection 

separately. The code removes the non-tidal part of the data within each subsection in one of 

two ways, with the choice being made by the user. In the first method, the mean value of the 

subsection is removed. The Admiralty Method harmonic constants are then estimated by 

solution of the appropriate normal equations. In the second method, a Bayesian estimate of 

the non-tidal drift in the signal is made concurrently with the estimates of the Admiralty 

Method harmonic constants. The estimated Admiralty Method harmonic constants for each 

subsection are then combined in a robust manner (Chave et al., 1987) to give an overall 

estimate of the tidal component of the original data signal. 

3.3.1 The Harmonic Method 

It is assumed in the Harmonic Method (Section 2.3.4) that an arbitrary tidal signal ζ(t) can be 

written as a sum of harmonic terms at the N tidal frequencies {ω1,…,ωN}, plus an error term 

ε(t): 
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Thus, given the set {ω1,…,ωN} a priori, equation (3.11) can be postulated as a parametric 

model for a time-series exhibiting tidal modulation. The set of harmonic constants {Ĥ1,…,ĤN 
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, ĝ1,…,ĝN} is then chosen to provide the best-fitting model for a given time-series. Usually, 

the harmonic constants are chosen to minimise the least-squares expression: 
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The harmonic constants which minimise the error of equation (3.12) can be found directly by 

solving the appropriate normal equations (Press et al., 1986). 

 

Unfortunately, the Harmonic Method is not a good means of extracting tidal information 

from a short time-series, for the reasons outlined in Chapter 2. It is only possible to separate 

harmonic components at angular frequencies ω1 and ω2 with a time-series whose length 

exceeds 2π/(ω1-ω2). Consequently, a prohibitively long time-series is required to estimate the 

harmonic constants at a useful number of tidal frequencies.  

3.3.2 The Admiralty Method 

The Admiralty Method of tidal analysis represents a distinct improvement over the Harmonic 

Method for seafloor hydrothermal systems because it can extract reasonably accurate 

harmonic constants from much shorter time-series (Doodson & Warburg, 1941; Admiralty 

Tidal Handbook, No. 1; Admiralty Tidal Handbook, No. 3). There are, in fact, two related 

versions of the Admiralty Method, but only one of them is considered in detail here. The first 

version is the Annual Grouping Method (Admiralty Tidal Handbook, No.1) which is 

designed for use with time-series longer than one year. Hydrothermal time-series are rarely 

as long as this, so the Annual Grouping Method will not be considered further. The second 

version of the Admiralty Method (Admiralty Tidal Handbook, No.3) is designed for the 

analysis of time-series of one month’s duration or less. It is this version of the method which 

is considered here. 

 

Given a tidally modulated time-series ζ(t) the task is to derive a finite set of parameters 

which summarises the tidal information contained within the signal. In a Harmonic Method 

decomposition (Section 3.3.1), the time-series ζ(t) is written as the sum of N harmonic 

components, plus an error term ε(t), as follows: 

              (3.13) ( ) ( ) ( )tgtHt jj

N

j
j εωζ +−= ∑

=

ˆcosˆ
1

It is conceptually useful to consider the sum in equation (3.13) to be a sum of N basis 

functions: 
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( ) ( ){ }ttb jj ωcosˆ =               (3.14) 

In equation (3.13), the basis functions of equation (3.14) are time-shifted by the phase-lags 

{ĝj} and scaled by the amplitudes {Ĥj} to create a synthetic tidal signal. Consequently, it is 

the set of 2N numbers {Ĥj,ĝj} which describes the tidal component of the time-series ζ(t). 

In the Admiralty Method, the tidal signal is written in a manner analogous to equation (3.13), 

as a sum of components, plus an error term ε(t): 

               (3.15) ( ) ( ) ( )( ) ( )tgttFHt jj
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The advantage of the Admiralty Method is that it has only four basis functions, defined by: 

( ) ( ) ( )( ){ }ttFtb jjj φcos=              (3.16) 

The functions Fj(t) and φj(t) are of great importance as they endow each Admiralty Method 

basis function with a degree of non-stationarity. The presence of Fj(t) and φj(t) in equation 

(3.16) shows that the Admiralty Method basis functions are not pure sinusoidal functions of 

time like the basis functions of the Harmonic Method (equation (3.14)). Rather, they might 

be described as pseudo-sinusoidal functions whose amplitude is modulated by the function 

Fj(t) and whose phase is controlled by the function φj(t). It is shown in Sections 2.3.1 – 2.3.3 

that the tidal potential can be viewed as a non-stationary mixture of diurnal and semi-diurnal 

oscillations whose magnitude and phase vary according to the positions of the sun and moon. 

The functions Fj(t) and φj(t) are calculated from astronomical theory at any time t and impose 

the same astronomical non-stationarity on all functions which are linear combinations of 

Admiralty Method basis functions (equation (3.16)). Consequently, the use of the Admiralty 

Method basis functions ensures automatically that the expected astronomical non-stationarity 

is present in all tidal signals. Daily values of the functions Fj(t) and φj(t) – valid at 00h00 

GMT - are published annually in Table VII of the Admiralty Tide Tables under the heading 

‘Tidal Angles and Factors’. The values at intermediate times are found by interpolation. The 

four Admiralty Method basis functions {b1(t),b2(t),b3(t),b4(t)} are shown over a period of 20 

days in 1994 in Figure 3.1 

 

The parameters in an Admiralty Method decomposition are the amplitudes {H1,…,H4} and 

phase-lags {g1,…,g4} which must be applied to the four basis functions of equation (3.16). 

The parameter set {H1,…,H4,g1,…,g4} describing the signal ζ(t) is usually chosen -  

according to a least-squares criterion - to minimise: 
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It is important to note the limits which are placed on the amplitudes and phase-lags. The 

amplitudes must be non-negative 

  [ )∞∈ ,0jH                (3.18) 

while the phase-lags are constrained as follows: 

  [ )π2,0∈jg                (3.19) 

This means that although the basis function bj(t) can be scaled arbitrarily (equation 3.18), it 

can only be shifted in phase by one cycle (equation 3.19).  
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Figure 3.1: The four basis functions of the Admiralty Method (equation 2.16)

as functions of time over a period of 20 days in 1994. The non-

stationarity of these basis functions is controlled by the positions of

the sun and the moon. The absolute lunar declination is shown for

comparison. (a) The M2A basis function b1(t). (b) The S2A basis

function b2(t). (c) The K1A basis function b3(t). (d) The O1A basis

function b4(t). 
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It should be noted that in equation (3.19) the phase lag gj is expressed in radians. The usual 

convention in the tidal literature (Doodson & Warburg, 1941) is to express angles in degrees. 

Both conventions are used in this dissertation. 

3.3.2.1 Derivation of the Admiralty Method basis functions {bj(t)} 

The basis functions of the Admiralty Method (equation (3.16)) are derived from a subset of 

the basis functions of the Harmonic Method (equation (3.14)). Since the Admiralty Method 

is designed for use with time-series shorter than one month, it cannot extract harmonic 

constants equivalent to the long-period species of the Harmonic Method. The Admiralty 

Method is only capable of extracting information from the diurnal and semi-diurnal 

frequency bands. Under a Harmonic Method decomposition of the tidal potential, the most 

significant diurnal components are K1 and O1, and the most significant semi-diurnal 

components are M2 and S2. Each of these four principal components {M2,S2,K1,O1} is 

associated with a group of harmonic components with similar frequencies (Table 3.1). 

Consequently, the 20 most important Harmonic Method components are organised into four 

groups.  

 
Admiralty Method 

component 
Harmonic Method 

component 
period (hours) relative magnitude 

within group 
2N2 12.90 0.02534 
µ2 12.87 0.03057 
N2 12.66 0.19146 
ν2 12.63 0.03636 
M2 12.42 1.00000 
λ2 12.22 0.00738 

 
 

M2A 
or 

b1(t) 
 

L2 12.19 0.02827 
T2 12.02 0.05861 
S2 12.00 1.00000 

S2A 
or 

b2(t) K2 11.97 0.27215 
π1 24.13 0.01939 
P1 24.06 0.33093 
K1 23.94 1.00000 
φ1 23.81 0.01424 

 
K1A 
or 

b3(t) 

J1 23.09 0.05591 
2Q1 28.02 0.02534 
σ1 27.84 0.03056 
Q1 26.87 0.19146 
ρ1 26.73 0.03637 

 
O1A 
or 

b4(t) 

O1 25.83 1.00000 
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Table 3.1: The derivation and naming of the four Admiralty Method basis functions is 

based on four groups of Admiralty Method basis functions. Table from 

Admiralty Tidal Handbook, No.3. 

 

The four Admiralty Method basis functions represent the overall, combined behaviour of the 

Harmonic Method components within each group in Table 3.1. For this reason, it is 

conceptually useful to refer to the four Admiralty Method basis functions {b1,b2,b3,b4} by 

using the notation {M2A,S2A,K1A,O1A}. However, it is very important to stress the 

difference between the set {M2,S2,K1,O1} of Harmonic Method basis functions and their 

Admiralty Method counterparts {M2A,S2A,K1A,O1A}. The former set consists of stationary, 

sinusoidal basis functions of the form ( ) ( ){ }ttb j ωcosˆ =  (equation (3.14)). The latter set 

consists of the non-stationary, pseudo-sinusoidal basis functions ( ) ( ) ( )( ){ }ttFtb jjj ϕcos= .  

 

In summary, the Admiralty Method of decomposing a tidal signal makes use of the fact that 

the astronomical motions of the sun and moon are well known and are expected to affect all 

tidal signals in a similar manner. This assumption allows tidal signals to be described by a 

set of 8 harmonic constants which can be extracted from reasonably short (~7 days) time-

series 

3.3.2.2 The information content of a tidal signal 

Consider a (synthetic) tidal signal created using the 1200 components of the Tamura tidal 

potential catalogue (Tamura, 1987) by the ETGTAB code (Figure 3.2a). Admiralty Method 

harmonic constants can be extracted from the original data series (sampling interval ∆t = 15 

min, series length N∆t = 7 days) according to the least-squares criterion of equation (3.17). 

The set of 8 Admiralty Method harmonic constants {H1,…,H4,g1,…,g4} which are obtained 

can be expressed in complex number form by the set of 4 complex numbers {A1,…,A4}, 

defined by: 

  
( ) ( )
( ) (





−=

=

jjj

jjj

gHA

gHA

sinIm

cosRe
)             (3.20) 

The set of complex harmonic constants {A1,…,A4} can then be graphed in the complex plane 

and labelled according to the corresponding basis functions {M2A, S2A, K1A, O1A} (Figures 

3.2b,c). The magnitudes {H1,…,H4} of the components are represented graphically by the 

length of the phasors. The phase lags {g1,…,g4} are represented by the angles, measured 

positive anticlockwise, between the real axis and the phasor. It is important to stress the 
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physical meaning of these phase lags. They represent the phase lag of each component 

relative to the corresponding component of the tidal potential on the Greenwich meridian. 

The time-series analysed in Figure 3.2 is an estimate of the tidal potential on the 30°W 

meridian. Semi-diurnal components of the tidal potential travel westwards round the globe at 

30° per hour, while diurnal components of the tidal potential travel westwards at 15° per 

hour. This explains why the semi-diurnal components have phase lags of 60° (Figure 3.2b) 

while the diurnal components have phase lags of 30° (Figure 3.2c). This illustrates an 

important feature of Admiralty Method harmonic constants.  

tidal potential (m^2.s^-2)

-2

2

-2 2

K1A O1A

tidal potential (m^2.s^-2)

-1.5

1.5

-1.5 1.5

M2A S2A

tidal potential at 45 deg N, 30 deg W

-4

-2

0

2

4

0 1 2 3 4 5 6 7
time (days) from 1994/1/1 00h00 GMT

W
 (m

^2
.s

^-
2)

Harmonic Admiralty

(c) (b)

(a) 

Figure 3.2: The extraction of Admiralty Method harmonic constants from a

tidal potential generated using 1200 components of a Harmonic

Method decomposition. (a) The tidal potentials generated by the

Harmonic Method and the Admiralty Method in the time domain.

(b) The semi-diurnal Admiralty Method harmonic constants in the

complex plane.  (c) The diurnal Admiralty Method harmonic

constants in the complex plane. Original time-series generated

using the ETGTAB code. 

 

For the tidal potential and the solid tide, the Admiralty Method harmonic constants have 

distinctive phase lags. The phase lags for the diurnal components (g3 and g4) equal the 
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westward longitude, while those for semi-diurnal components (g1 and g2) equal twice the 

westward longitude. As a consequence, it is a striking feature of the diagrams that the two 

semi-diurnal components have the same phase lag (i.e. g1 =g2 in Figure 3.2b), and the two 

diurnal components have the same phase lag (i.e. g3 =g4 in Figure 3.2c). In general these 

phase lag equalities do not occur for the ocean tide (Figure 3.3). Consequently, if plots of the 

Admiralty Method harmonic constants for a time-series show that g1≈g2 and g3≈g4 then this 

constitutes evidence that the time-series is more closely correlated to the solid tide than the 

ocean tide. 

It is of interest to compare the original time-series generated by the Harmonic Method 

harmonic constants {Ĥ1,…,Ĥ1200,ĝ1,…,ĝ1200} with the time-series generated by the Admiralty 

Method harmonic constants {H1,…,H4,g1,…,g4} (Figure 3.2a). The time-series generated by 

the 8 parameters of the Admiralty Method does not match the original perfectly, but the fit is 

nonetheless remarkably good. It is tempting to conclude that a parametric description with 

2400 degrees of freedom has been replaced by a parametric description with 8 degrees of 

freedom, but this is not so. The harmonic decomposition of a tidal signal into N Harmonic 

Method components does not have 2N degrees of freedom, because certain magnitude and 

phase relationships always hold between some of the components for all tidal signals. This 

should not be too surprising. The working definition of a tidal signal is ‘a time-series whose 

fundamental physical cause is the tidal potential’. It is shown in Section 2.3 that the 

harmonic decomposition of the tidal potential is derived from the simpler long-

period/diurnal/semi-diurnal decomposition. The essence of the Admiralty Method is the 

assumption that the astronomical motions of the sun and moon impose the same constraints 

on all tidal signals. It must be stressed that this is only a hypothesis, but it is one that has 

been shown to be justified in the many applications of the Admiralty Method to the 

description of ocean tides in the world’s ports.  

 

Figure 3.3 shows the Admiralty Method harmonic constants extracted from an estimate of 

the ocean tide at 45°N, 30°W.  The estimate of the ocean tide is made using the CSR code 

which is based on the results of satellite altimetry (Schrama & Ray, 1994). Figure 3.3a shows 

that the 8 Admiralty Method harmonic constants reproduce the original signal remarkably 

well. Figures 3.3b,c demonstrate that the phase lags for the ocean tide are not generally as 

simple as those for the solid tide (Figures 3.2b,c).  For the ocean tide, it is not generally true 

that g1≈g2 or g3≈g4. 

3.3.2.3 Astronomical and intrinsic non-stationarity 

 



Chapter 3: The analysis of tidal data 51

By definition, every tidal signal is the output from some physical system whose input is the 

tidal potential. The tidal potential exhibits astronomical non-stationarity due to the motions 

of the sun and moon (Sections 2.3.1 – 2.3.3). Consequently, if the physical mechanism 

linking the tidal potential to the observable time-series does not change over time, it is to be 

expected that the observable time-series will exhibit the same astronomical non-stationarity. 
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Figure 3.3: The extraction of Admiralty Method harmonic constants from an

estimate of the ocean tide generated from a Harmonic Method

decomposition. (a) The ocean tide signals generated by the

Harmonic Method and the Admiralty Method in the time domain.

(b) The semi-diurnal Admiralty Method harmonic constants in the

complex plane.  (c) The diurnal Admiralty Method harmonic

constants in the complex plane. Harmonic Method ocean tide time-

series generated using the CSR code. 
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Astronomical non-stationarity is easily predicted from astronomical formulae and is 

explicitly accommodated in the basis functions of the Admiralty Method (equation (3.16)). 

As an example, consider the parametric analysis of a tidal signal of two weeks duration. The 

time-series could be split into disjoint sections, each a week long, which are to be analysed 

separately. The set of 2N parameters extracted in a Harmonic Method decomposition 

{Ĥ1,…,ĤN , ĝ1,…, ĝN} changes from one week to the next because of the astronomical non-

stationarity induced by declinational changes (Figure 2.3). However, an Admiralty Method 

decomposition yields the same set of 8 parameters {H1,…,H4,g1,…,g4} for both weeks. For 

this reason, the Admiralty Method is immune to astronomical non-stationarity. 

 

However, there is a second type of non-stationarity which might be present in a time-series, 

to which the Admiralty Method is not immune. This can be labelled intrinsic non-

stationarity, and occurs if the physical mechanism linking the tidal potential to the 

observable time-series is itself subject to change over the observation interval. For example, 

if the observable time-series is the temperature of hydrothermal effluent, a change in seafloor 

hydrology could lead to a change in the spectral character of the temperature signal. Other 

examples would be drift caused by an erratic instrumental power supply, or by hydrothermal 

precipitation on seafloor sensors. 

 

If a time-series dataset is split into subsections, each can be analysed separately using the 

Admiralty Method. If the harmonic constants obtained from these analyses change 

significantly between the subsections, it can be surmised that there is an intrinsic non-

stationarity in the time-series.  

3.3.2.4 Robustification of the Admiralty Method 

Since hydrothermal time-series are noisy, it is of interest to consider how the estimation of 

Admiralty Method harmonic constants could be made more robust. In general a data section 

of ~7 days length is sufficient to yield accurate estimates of the Admiralty Method harmonic 

constants. Consequently, a time-series longer than ~7 days can be split into shorter 

subsections for which the Admiralty Method harmonic constants are estimated separately. 

Chave et al. (1987) suggest a manner in which power spectrum estimates from the separate 

subsections can be combined in a robust manner to yield an overall estimate. Their method is 

here adapted to the case of estimating Admiralty Method harmonic constants. As an 

example, consider the estimation of the (complex) harmonic constant A1 associated with the 

M2A component (equation (3.20)). Suppose that the original time-series is split into M 
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subsections, and that the estimate of A1 obtained from the mth subsection is labelled A1,m. The 

technique of Huber weighting can be used to derive an overall estimate from the set {A1,m} of 

estimates obtained from the separate subsections. The real and imaginary parts of A1 are 

estimated in the same manner, and so estimation of the real part only is described here. 

Firstly, the median µ and interquartile distance σ of the set {Re(A1,m)} are calculated. (The 

median and interquartile distance are robust equivalents of the mean and standard deviation). 

The scaled distance of the mth estimate from the median is given by: 

  
( )
σ

µ−
= m

m

A
x ,1Re

              (3.21) 

The purpose of the robustification is to downweight the influence on the overall estimate of 

outlier subsection estimates for which │xm│ is large. Consequently a set of weights {wm} is 

defined by: 
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x
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kxw
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mm
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2

2

2

1

             (3.22) 

Chave et al. (1987) suggest that k = 1.5 gives good results. The overall estimate of the real 

part of the harmonic constant is then given by: 

               (3.23) ( ) ( )m

M

m
m AwA ,1

1
1 ReRe ∑

=

=

Furthermore, this robust section averaging technique can be used to estimate jack-knife 

confidence limits for the estimate Re(A1) on the assumption that the real and imaginary parts 

of A1 are normally distributed. 

Robust estimates of Admiralty Method harmonic constants are made using this technique for 

the data presented in Chapter 4. For sufficiently long time-series, robust section averaging is 

used and 95% confidence limits can be placed on the harmonic constants in the complex 

plane.  

3.3.3 Drift Removal by Bayesian methods 

In many cases, the time-series obtained from a hydrothermal system appears to be the sum of 

three separate signals - a tidal signal, a background drift signal and residual high frequency 

noise. For example, the temperature measurements obtained at TAG on the Mid-Atlantic 

Ridge (Schultz et al., 1996) show tidal variations of ~0.5 °C superimposed on a slow drift 

whose amplitude is ~10 °C. (Figure 4.11). It is desirable to have a well-defined method of 

decomposing a time-series into a drift signal, a parametrised tidal signal and residual error. 

An interesting method, whose heuristic justification relies on techniques from Bayesian 
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statistics, is proposed by Tamura et al. (1991). In their original method, the tidal signal is 

represented parametrically by a Harmonic Method decomposition. In order to apply their 

method to short hydrothermal time-series, it is adapted here to incorporate an Admiralty 

Method decomposition. Accordingly, what follows is a summary of the theory presented by 

Tamura et al. (1991) and Akaike (1980), modified where necessary to incorporate the 

Admiralty Method. 

Suppose that the time-series to be analysed consists of the data {x1,…,xN}, collected at times 

{t1,…,tN}. The objective is then to estimate a drift signal {d1,…,dN} and a set of Admiralty 

Method harmonic constants {H1,…,H4,g1,…,g4} which generate a tidal signal {ζ1,…,ζN} 

according to: 

              (3.24) ( ) ( )( )jij
j

ijji gttFH −= ∑
=

φζ cos
4

1

Consequently, the original time-series {x1,…,xN} can be decomposed into a tidal signal (ζi), a 

drift signal (di), and a residual error signal (εi) as follows: 

  iiii dx εζ ++=               (3.25) 

It is reasonable to demand two properties of the extended parameter set 

{d1,…,dN,H1,…,H4,g1,…,g4} which is to be estimated from the data {x1,…,xN}. Firstly, the 

drift {di} should be smooth, and secondly the resulting error {εi} should be small. The 

smoothness of the drift is quantified by the expression: 

   ∑ −d               (3.26) 
=

−− +
N

i
iii dd

3

2
212

A small value of this quantity is desirable to ensure that the drift is smooth. 

The size of the error can be quantified by the expression: 

   ∑
==

−−=
N

i
iii
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1

2

1
ζ∑ i

2ε              (3.27) 

A small value of this quantity is desirable to ensure that the error is small. 

In order to achieve the simultaneous requirements of smooth drift and small error, the 

extended parameter set {d1,…,dN,H1,…,H4,g1,…,g4} is obtained by finding the values which 

minimise the penalised least-squares expression: 

  ∑∑
=

−−
=

+−+−−
N

i
iii

N

i
iii ddddx

3

2
21

2

1

2 2νζ            (3.28) 

Equation (3.28) shows that the relative importance of smooth drift and small error is 

controlled by a hyperparameter ν whose value must be chosen before the least-squares 
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solution is found. (Later, an analogy with Bayesian statistics will provide an explicit criterion 

for selecting the optimal value of ν.) 

The penalised least squares minimisation of equation (3.28) can be written in matrix form by 

defining an extended data vector X (of dimension 2N-2), and an extended parameter vector P 

(of dimension N+8) as follows: 
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           (3.29) 

For later convenience the vector P is split into two parts: d=(d1,…,dN) and 

θ=(H1cos(g1),…,H4sin(g4)). It should be noted that the set of Admiralty Method harmonic 

constants {H1,…,H4,g1,…,g4} is easily recovered from the elements of θ. Therefore the 

vector d represents the drift signal while the vector θ represents the parameters which 

generate the estimated tidal part of the signal. 

The N-by-8 matrix T is defined by: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) (( )














=

NNNNNNNN ttfttfttfttf
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1414141411111111
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L
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     (3.30) 

The (N-2)-by-N matrix D is defined by: 
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The (2N-2)-by-(N+8) matrix A is defined by: 

                 (3.32) 







=

OD
TI

A N

ν

where IN is the N-by-N identity matrix and O is an (N-2)-by-8 matrix of zeroes. 

It then follows that the solution P*=(d*,θ*) of the penalised least squares minimisation of 

equation (3.28) is the value of P which minimises the matrix norm: 

  2XPA −                (3.33) 
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For a given value of the hyperparameter ν, the solution P* which minimises this norm can be 

found explicitly by constructing and solving the appropriate normal equations (Press et al., 

1986). The solution is: 

  ( ) XAAAP TT 1* −
=               (3.34) 

A criterion for deciding the optimal value of the hyperparameter ν is now constructed by 

analogy with Bayesian statistics. 

Consider the idealised case where the drift can be represented stochastically by an integrated 

random walk. Suppose that the {EI} is a set of random variables, drawn independently from 

a zero-mean normal distribution of variance σ2/ν2. The drift is then given by:  

  iiii Eddd ++= −− 212               (3.35) 

In the language of Bayesian statistics, equation (3.32) defines a prior distribution for the drift 

signal, given by: 
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It is now supposed that the error terms {εi} of equation (3.25) are drawn independently from 

a zero-mean normal distribution of variance σ2. It follows that the data distribution is 

proportional to: 
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From equations (3.36) and (3.37), the posterior distribution for the data x is proportional to: 
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Given the stated assumptions, it is reasonable to define estimates of σ2 and θ which maximise 

the posterior likelihood (equation (3.38)) to be optimal. It can be shown that equation (3.38) 

is maximised with respect to θ and σ2 by setting θ=θ* (the solution from equation (3.34)) and 

by setting σ2= σB
2, where σB

2 is defined by: 

  
2*2 1 XPA

NB −=σ               (3.39) 
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Finally, the posterior marginal likelihood L(ν) is defined by integrating equation (3.40) with 

respect to d: 

( ) ( ) ( )∫= ddddxfL BB νσπθνσν ,,,, 2*2             (3.41) 

It can be shown that: 
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The optimal value of the hyperparameter ν is now to defined to be the value which 

maximises the posterior marginal likelihood L(ν) of equation (3.42). Equivalently, the 

optimal value of ν is the value which minimises the quantity -2log(L(ν)), defined by: 

( )( ) ( ) ( )( ) ( )( )DDDDINNL TT
B

222 detlogdetlog2loglog2 ννπσν −+++=−         (3.43) 

When comparing different values of the hyperparameter ν in a particular problem, equation 

(3.31) shows that the matrix D remains unchanged. It follows that 

log(det(ν2DTD))=Nlog(ν2)+constant in equation (3.43). Consequently, the optimal value of ν 

in a particular problem is defined to be the value which minimises the quantity: 

( ) ( ) ( )( ) ( )222 logdetlog2log ννπσν NDDINNABIC T
B −+++=          (3.44) 

The quantity ABIC(ν) is known as ‘Akaike’s Bayesian Information Criterion’ (Tamura et al., 

1991).  

 

In practice, a computer can be programmed to vary the value of ν, obtaining a solution from 

equation (3.34) each time, until the least value of ABIC(ν) is found. The final estimate of the 

drift d and the Admiralty Method harmonic constants θ are the solutions obtained from 

equation (3.34) when ν minimises ABIC(ν).   

3.3.4 The HYBRID code – a parametric method for analysing tidal data 

The ideas of the previous sections are combined in a new method of parametric analysis, 

which is specifically designed to extract tidal information from hydrothermal time-series. 

This method is implemented by the new HYBRID code which is used for parametric data 

analysis in Chapter 4. 

 

The HYBRID code is designed to estimate Admiralty Method harmonic constants from 

hydrothermal time-series. For sufficiently long time-series, the time-series is split into 

separate subsections which are analysed independently. For the analysis of tidal signals, a 

subsection length of 1 week is often used as this is sufficiently long to allow accurate 

estimates to be made of the four complex harmonic constants {A1, A2, A3, A4} (equation 
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(3.20)). In order to make clear their meaning, these harmonic constants are labelled 

according to the Admiralty Method basis function to which they correspond {M2A, S2A, 

K1A, O1A}. The HYBRID code analyses the individual data subsections in one of two ways, 

with the choice being made by the user. The first method is labelled ‘mean removal’, and 

involves the subtraction of the mean value of the subsection before the harmonic constants 

are estimated. This technique is simple and works well when the time-series does not suffer 

from excessive drift.  The second method is labelled ‘Bayesian drift removal’. This 

technique (Section 3.3.3) is much more computationally intensive, and is designed to 

decompose the time-series into (1) a smooth drift signal, (2) a tidal signal generated by the 

Admiralty Method harmonic constants, and (3) residual noise. Use of this method in Chapter 

4 suggests that it works very well when the time-series follows closely the parametric form 

assumed in Section 3.3.3. However, for very noisy time-series, better results are obtained by 

using ‘mean removal’ in each subsection. 

 

Finally, the harmonic constants estimated for each subsection are combined using Huber 

weighting to yield an overall robust estimate for the Admiralty Method harmonic constants. 

95% jackknife confidence limits are provided for these estimates on the assumption that the 

real and imaginary parts of the harmonic constants are independently normally distributed.  

3.4 Conclusions 

The aim of this chapter is to explain the techniques for analysing hydrothermal time-series 

which are implemented in Chapter 4. 

 

The first test of a time-series is to examine it in the time domain. In many cases diurnal and 

semi-diurnal periodicities are immediately apparent and it can be suspected that the time-

series is tidally modulated. It is of interest to decide whether the tidal modulations are caused 

by the ocean tide or the solid tide and so it may be useful to graph these ‘input signals’ 

alongside the data signal in the time domain. 

 

The next stage in the investigation of a time-series is to obtain a non-parametric estimate of 

its frequency spectrum. In the past, many authors have used the periodogram to estimate the 

power spectrum of seafloor time-series in order to establish whether it is tidally modulated. It 

is argued here, in Section 3.2.1, that the periodogram is an extremely bad estimator of the 

true power spectrum and should not be used. It is suggested instead that the multiple window 

method of Thomson (1982) should be used in the non-parametric analysis of tidal signals in 
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seafloor hydrothermal systems. Consequently, the MWPS code (A. Chave, pers. comm., 

1999) is used in Chapter 4 to obtain spectral estimates for hydrothermal time-series. This 

code incorporates an explicit method for the identification of significant line components in 

the spectrum. If significant line components are identified at the known tidal frequencies (in 

particular at ~1.93 cpd corresponding to the M2 component) then it can be concluded with 

confidence that the time-series is tidally modulated. 

 

In the cases where non-parametric analysis reveals tidal modulation of the time-series, a 

parametric analysis can be attempted in order to summarise the nature of the tidal signal. It is 

suggested that the Admiralty Method is the optimal parametric description of tidal signals 

since it requires only 8 harmonic constants to describe an arbitrary tidal signal. Furthermore, 

the harmonic constants for any time-series can be extracted from a fairly short data section of 

~7 days. The Admiralty Method is able to describe tidal signals using so few parameters 

because much of the information content of a tidal signal is due to the well known 

astronomical motions of the sun and moon and is the same for all tidal signals. 

 

A new computer code – HYBRID – for the parametric analysis of tidally modulated signals 

is described (Section 3.3.4). The HYBRID code is designed to estimate the Admiralty 

Method harmonic constants of a tidally modulated signal. It incorporates a Bayesian 

technique for drift removal (Section 3.3.3) and robust section averaging (Section 3.3.2.4). 

The HYBRID code is used extensively in Chapter 4 to quantify the tidal part of a number of 

seafloor time-series. 

 

The (complex) harmonic constants extracted from a time-series using the Admiralty Method 

can be plotted in the complex plane for ease of interpretation. In Chapter 4, the harmonic 

constants of a seafloor time-series are compared with the harmonic constants of the solid and 

ocean tides in order to establish whether the ocean tide or the solid tide is responsible for the 

tidal modulation of the time-series. 
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