
Chapter 6: Poroelasticity and tidal loading   163
 

 

Chapter 6: Poroelasticity and tidal loading 

 
6.1 Introduction 
It is established above, in Chapter 4, that there are many known examples of the tidal 

modulation of seafloor hydrothermal systems. Variations in temperature, effluent velocity 

and chemistry can often be correlated to the local ocean tide, and it is therefore expected that 

the changing tidal pressure field on the seafloor is responsible for a majority of the observed 

tidal signals. In contrast, Chapter 5 is concerned with the steady-state structure of a seafloor 

convection cell, and in particular its dependence on the properties of water. The aim of this 

chapter is to establish whether the nonlinear thermodynamic properties of water (Chapter 5) 

are sufficient to explain the tidal signals which have been observed at mid-ocean ridge 

hydrothermal systems (Chapter 4). 

 

The effect of tidal loading on subseafloor convection cells is investigated with reference to 

the equations of poroelasticity, which describe the response of a fluid-filled porous medium 

to applied stress (Biot, 1941; Rice & Cleary, 1976; Van der Kamp & Gale, 1983; Kümpel, 

1991). When a porous medium is placed under load, the resultant stress is borne partly by the 

solid matrix and partly by the interstitial fluid where it is manifest as a change in fluid 

pressure known as the incremental pore pressure. The partitioning of the total stress between 

the fluid and the solid matrix is a function of their elastic properties and the porosity. 

Consequently, if any one of these properties varies spatially, it is possible for a locally 

uniform load, such as the ocean tide, to produce a non-uniform incremental pore pressure 

field. The subsequent spatial gradients in the incremental pore pressure can then drive 

interstitial fluid from one region of the fluid-filled medium to another.  

 

For this reason, it is of great interest to consider how the poroelastic properties of a 

subseafloor convection cell vary spatially. As in Chapter 5, it is assumed for simplicity that 

the elastic and transport properties of the solid matrix are constant and homogeneous. The 

only source of spatial variability is the interstitial fluid, whose properties are known to be 

strongly dependent on temperature. For example, it is shown that the bulk modulus of water 

changes significantly over the temperature range encountered in a subseafloor hydrothermal 

system. The partitioning of the total tidal stress between the matrix and the interstitial fluid 

 



Chapter 6: Poroelasticity and tidal loading   164
 
differs markedly between regions where the fluid is liquid-like and regions where it is gas-

like. When tidal loading is applied at the seafloor, the gradients in incremental pore pressure 

induce tidally modulated fluid flow between the cold, liquid-like regions and the hot, gas-

like regions. 

 

The physical quantities associated with the fluid in a subseafloor convection cell - such as 

pressure, velocity and temperature (Section 5.3) – are expected to fluctuate as a result of tidal 

loading. The label ‘incremental’ is used to refer to the tidally induced variation of any 

physical quantity about its undisturbed value. For some years, there has been a well-

established analytical solution giving the incremental pore pressure in an infinite one-

dimensional halfspace subject to uniform tidal loading (Van der Kamp & Gale, 1983; Wang 

& Davis, 1996). Here, this solution is extended to cover the two physical quantities which 

are commonly measured on the seafloor – the vertical velocity and the temperature (Chapter 

4). For an infinite halfspace, it is shown that the incremental vertical velocity at the seafloor 

lags the ocean tide by 135°. Consequently, the maximum effluent velocity at the seafloor is 

predicted to occur ~4.5 h after high tide for semi-diurnal components, and ~9 h after high 

tide for diurnal components. If the permeable crust is taken to be of finite thickness the 

corresponding phase lag is shown to lie between 90° and ~135°, depending on the thickness 

of the permeable layer relative to the lengthscale associated with pore pressure diffusion. 

Consequently, observed phase lags between the ocean tide and effluent velocity at the 

seafloor could be used to infer the vertical distance over which the crust is permeable. 

 

An approximate expression for the tidally induced incremental temperature is derived for the 

case of buoyant fluid ascending through a linear temperature gradient. It is shown that the 

incremental temperature lags the incremental velocity by 90°. Hence, for an infinite 

halfspace, the incremental temperature at the seafloor lags the ocean tide by 225° and the 

hottest effluent is expelled ~7.5 h after high tide for semi-diurnal components, and ~15 h 

after high tide for diurnal components. If the permeable crust has finite thickness, however, 

the seafloor effluent temperature lags the ocean tide by an angle between 180° and ~225°, 

depending on the thickness of the permeable layer. These predicted phase lags are shown to 

be consistent with many of the seafloor data discussed in Chapter 4. 

 

Analytical solutions of simple one-dimensional models allow the physical processes 

responsible for seafloor tidal signals to be identified. In Section 6.3.2, some preliminary 
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numerical simulations are presented in which the two-dimensional convection cell of Section 

5.3 is subjected to uniform tidal loading at the seafloor. The results of these simulations are 

interpreted with reference to the one-dimensional analytical solutions (Section 6.3.1). 

 

6.2 Fundamental concepts of poroelasticity 

The purpose of this section is to review the theory of poroelasticity, with particular regard to 

hydrothermal systems under tidal loading (Biot, 1941; Rice & Cleary, 1976; Van der Kamp 

& Gale, 1983; Kümpel, 1991). It is assumed that the properties of the crust are constant and 

homogeneous. Consequently, the objective is to investigate the effect which temperature-

dependent fluid properties have on the principal poroelastic parameters.  

 

6.2.1 The dependence of poroelastic parameters on fluid temperature 

When a fluid-filled porous medium such as the ocean crust is placed under external load, it 

experiences incremental stress ( )ijσ̂  and incremental strain ( )ijê . Prior to loading, the 

absolute pressure of the fluid in the pores (p) is constant. Under load, however, there is an 

additional, time-varying pressure known as the incremental pore pressure . The confining 

pressure  is a scalar measure of the stress, defined by: 

( )p̂

( cp̂ )

  kkcp σ̂
3
1ˆ −=                  (6.1) 

(The Einstein summation convention is used throughout, so that there is an implied 

summation over a repeated tensor suffix.) Three distinct bulk moduli are relevant to the 

behaviour of the fluid-filled porous medium and their physical interpretation is summarised 

in Figure 6.1. Firstly, the grain bulk modulus (Kg) is the bulk modulus of the medium in the 

absence of any pore space. Secondly, the matrix bulk modulus (Km) is the bulk modulus of 

the medium when the pore space exists but is empty. (For this reason, it is sometimes known 

as the drained bulk modulus.) Values of the grain and matrix bulk moduli for several 

geological materials are reproduced in Table 6.1. 
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Figure 6.1: Schematic illustrations of the three bulk moduli relevant to

poroelasticity. (a) A fluid-filled poroelastic medium subjected to an

incremental confining pressure has incremental pore pressure

. (b) Situation defining the grain bulk modulus: e .

(c) Situation defining the matrix bulk modulus: . (d)

Situation defining the fluid bulk modulus: e  

 

Thirdly, the fluid bulk modulus (Kf) is the bulk modulus of the fluid which fills the pore 

space, and is a function of its pressure and temperature. If the pore fluid has temperature T, 

specific enthalpy h, and density ρ, then the isenthalpic fluid bulk modulus (Kfh) is defined 

(Van Wylen & Sonntag, 1978) by: 
1
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while the isothermal fluid bulk modulus (KfT) is defined by: 
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For water, the values of Kfh and KfT are sufficiently similar to be regarded as interchangeable, 

and both may be considered synonymous with the fluid bulk modulus (Kf). (The values 

quoted in this dissertation are derived from the steam tables embedded in the 
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HYDROTHERM code and are, strictly, isenthalpic fluid bulk moduli.) Values of Kf are 

plotted in Figure 6.2 for a range of pressures and temperatures relevant to seafloor 

hydrothermal systems. 

 

material Kg (GPa) Km (GPa) ν φ0 k (m2) 
seafloor sediment1 50 0.5 0.10 0.50 1 · 10-17 to 1 · 10-15 
seafloor sediment2    0.60 1 · 10-15 
seafloor sediment3  2.17  0.80 5 · 10-15 
Ruhr sandstone4 36 13 0.12 0.02 2 · 10-16 
Berea Sandstone4 36 8 0.20 0.19 2 · 10-13 
Weber sandstone4 36 13 0.15 0.06 1 · 10-15 
Charcoal granite4 45 34 0.27 0.02 1 · 10-19 
Westerly granite4 45 25 0.25 0.01 4 · 10-19 
Tennessee marble4 50 40 0.25 0.02 1 · 10-19 
MOR basement5     9 · 10-12 
“typical” Basalt6  30 0.20   

 

Table 6.1: The transport and elastic properties of various geological materials. Kg – 

grain bulk modulus. Km – matrix bulk modulus. ν – Poisson’s ratio. φ0 – 

porosity. k – permeability. References: (1) Wang & Davis (1996). (2) Fang 

et al. (1993). (3) Hurley & Schultheiss (1991). (4) Van der Kamp & Gale 

(1983). (5) Fisher et al. (1997) – MOR refers to ‘Mid-Ocean Ridge’. (6) 

Carmichael (1982), where values for several basalts are given - typical 

values are reproduced here. 

 

Figure 6.2 shows that Kf depends strongly on temperature but only weakly on pressure in the 

region of p-T space relevant to seafloor hydrothermal systems. The temperature dependence 

is similar to that of the thermodynamic properties considered in Chapter 5 (Figure 5.6), in the 

sense that there is a sharp change in behaviour at ~400°C as water moves from a liquid-like 

state to a gas-like state. At seafloor pressures, the bulk modulus of water ranges from a cold, 

liquid-like value of ~2.2 GPa at 2°C to hot, gas-like values between ~0.02 GPa and ~0.05 

GPa above ~400°C. (A fluid obeying the laws for a perfect gas has a bulk modulus (Kf) equal 

to the fluid pressure (p). At seafloor pressures, water above ~400°C approximates this 

perfect gas behaviour fairly closely.) Comparison of Figure 6.2a with Table 6.1 shows that 

the bulk modulus of water in the seafloor crust (Kf) is much smaller than the grain bulk 

modulus (Kg) for all of the listed geological materials. It is therefore assumed that Kf<<Kg for 

all subseafloor convection cells. However, it is not always true that Kf<<Km. For example, 
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Table 6.1 shows that Kf  (~2.2 GPa when cold) may even exceed Km (~0.5 GPa), when the 

poroelastic medium is sediment. 
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Figure 6.2: The bulk modulus of pure water, Kf. (a) Kf as a function of pressure

and temperature. (b) Kf as a function of temperature at a range of

typical subseafloor pressures. Data are derived from the steam

tables embedded in the HYDROTHERM code. (107 Pa corresponds

to 1 km below sea level.) 

 

The three bulk moduli (Kg, Km, and Kf), and the porosity (φ0) together constitute a set of four 

fundamental parameters describing the elastic properties of a fluid-filled porous medium. 

Three further parameters (α, S and β) are often derived from this fundamental set, and their 

dependence on the thermodynamic state of the pore fluid is considered below.    

6.2.1.1 Coefficient of effective stress: α 

Firstly, the coefficient of effective stress (α) is defined (Nur & Byerlee, 1971) by: 

  
g

m

K
K

−= 1α                  (6.4) 

Hence, α is a measure of the relative magnitude of the matrix and grain bulk moduli (Table 

6.1). It should be noted that Km ≤ Kg, and so α is a dimensionless number in the range [0,1]. 

The value of α depends solely on the properties of the rock matrix, and not on the properties 

of the interstitial fluid. Consequently, it is assumed for simplicity that α is constant and 

homogeneous within any particular subseafloor convection cell. For the geological materials 

listed in Table 6.1, the values of α range from 0.2 (Tennessee marble) to 0.99 (seafloor 

sediment). 
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6.2.1.2 Storage compressibility: S 

The second derived parameter is the storage compressibility (S) defined by: 
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As its name implies, the storage compressibility has units of inverse pressure, and it can be 

interpreted as the volume of interstitial fluid which is added to the pore space, per unit 

volume of rock, per unit increase in pore pressure (Kümpel, 1991). Since Kg, Km, and φ0 are 

regarded as constants for any particular problem, it follows that spatial variations in S can 

only be due to spatial variations in Kf. Figure 6.2 shows that Kf changes little with pressure 

and is a decreasing function of temperature. It therefore follows from equation (6.5) that S 

changes little with pressure and is an increasing function of temperature. Table 6.1 suggests 

that Kg = 50 GPa and Km = 30 GPa might be reasonable values for the bulk moduli of the 

oceanic crust. Unless otherwise stated, these values will be used throughout this chapter. 

The fact that S depends on the fluid bulk modulus suggests that there will be a marked 

change in its value at ~400°C, when water changes from a liquid-like state to a gas-like state. 

Equation (6.5) shows that the relative magnitude of this change is controlled by the value of 

the porosity, φ0. Consequently, a critical porosity, φc(p,T), can be defined by: 
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It should be noted that this critical porosity depends on the fluid bulk modulus (Kf) and is 

therefore pressure- and temperature-dependent. The variability of S as a function of fluid 

temperature can now be classified into one of three regimes corresponding to large, 

intermediate and small values of the porosity ratio (φ0 / φc). In the intermediate porosity 

regime - when  (φ0 / φc)~1 for all temperatures - the full defining equation for S must be used 

(equation (6.5)). However, simplifications can be made when the porosity is either large or 

small in relation to the critical porosity, φc. For Kg = 50 GPa and Km = 30 GPa the critical 

porosity (φc) is 0.03 for cold water (Kf = 2.2 GPa) and 0.0003 for hot water (Kf = 0.02 GPa). 

The dependence of S on pressure and temperature for the three porosity regimes is illustrated 

in Figure 6.3.  
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Figure 6.3: The dependence of the storage compressibility (S) on the

thermodynamic state of the interstitial fluid in the large,

intermediate and small porosity regimes with Kg = 50 GPa, Km = 30

GPa. The interstitial fluid is assumed to be pure water.

Thermodynamic data are taken from the tables embedded in the

HYDROTHERM code. (a),(b) φ0 = 0.05 (large). (c),(d) φ0 = 0.001

(intermediate). (e),(f) φ0 = 0.00005  (small). (107 Pa corresponds to

1 km below sea level.) 
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The large porosity regime - when (φ0 / φc) >1 for all temperatures - implies that: 

  
fK

S 0φ≈                  (6.7) 

Equation (6.7) shows that the storage compressibility (S) is proportional to the fluid 

compressibility (Kf
-1) in the large porosity regime (Figures 6.3a,b).   

In contrast, the small porosity regime - when (φ0 / φc) < 1 for all temperatures - implies that 

  
mgm KKK

S α
=










−≈

11                (6.8) 

Hence, the storage compressibility is approximately constant as a function of temperature 

when the porosity is small (Figures 6.3e,f).  

 

In summary, it should be noted that S is always an increasing function of fluid temperature at 

seafloor pressures. The greatest change in S occurs at ~400˚C, as the water changes from a 

liquid-like state to a gas-like state. The contrast between the liquid-like and gas-like values 

of S is greatest when the porosity is large.  

6.2.1.3 Skempton ratio: β 

Thirdly amongst the derived poroelastic parameters, the Skempton ratio (β) is defined by 
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The Skempton ratio is a dimensionless parameter taking values in the range [0,1]. When a 

poroelastic medium is loaded isotropically, the Skempton ratio (β) can be interpreted as the 

ratio of the incremental pore pressure ( )p̂  to the applied incremental confining pressure ( )cp̂  

(Figure 6.1a). Equivalently, β is the proportion of the total applied stress which is borne by 

the pore fluid. Equations (6.4), (6.5) and (6.9) imply that β = (α / Km) / S. Since α and Km are 

constant properties of the rock matrix, it follows that the variation of β with the 

thermodynamic state of the fluid can be divided into the same three porosity regimes as the 

variation of S.  
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Figure 6.4: The dependence of the Skempton ratio (β) on the thermodynamic

state of the interstitial fluid in the large, intermediate and small

porosity regimes with Kg = 50 GPa, Km = 30 GPa. Interstitial fluid

is pure water. Thermodynamic data from the tables embedded in

the HYDROTHERM code. (a), (b) φ0 = 0.05 (large). (c), (d) φ0 =

0.001 (intermediate). (e), (f) φ0 = 0.00005 (small). (107 Pa

corresponds to 1 km below sea level.) 

For intermediate porosity - when  (φ0 / φc) ~ 1 - the full defining equation for β (equation 

(6.9)) must be used. However, for large porosity - when (φ0 / φc) > 1 - equation (6.9) reduces 

to:  
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Hence the Skempton ratio (β) is a scaled version of the fluid bulk modulus (Kf) when the 

porosity is large and it is therefore highly temperature dependent (Figures 6.2a,b, 6.4a,b). 

In contrast, for small porosity - when (φ0 / φc) < 1 - the temperature dependence of the 

Skempton ratio is much reduced (Figures 6.4e,f) and equation (6.9) reduces to 

1≈β                 (6.11) 

In summary, β is a decreasing function of fluid temperature for all seafloor pressures, with 

the greatest change occurring at ~400°C, where water changes from a liquid-like state to a 

gas-like state. The contrast between the liquid-like and gas-like values of β is greatest when 

the porosity is large. Since β represents the proportion of the applied stress borne by the 

interstitial fluid, it follows that uniform tidal loading at the seafloor can create incremental 

pore pressures which differ between the hot and cold parts of a hydrothermal convection cell. 

In general terms, when the ocean tide is high, cold regions of the cell (where β is large) will 

have greater pore pressures than hot regions (where β is small). Consequently, fluid is 

expected to flow from cold regions to hot regions at high tide. The pressure difference which 

drives the flow is particularly large if the hot fluid is gas-like (>~400°C) and the cold fluid is 

liquid-like (<~400°C). The magnitude of the induced flow is determined by the spatial 

gradient of the incremental pore pressure. Consequently, the induced tidally modulated flow 

is expected to be large where spatial gradients in temperature are large. This heuristic 

argument is investigated with greater rigour in Section 6.3. 

6.2.2 The governing equations of poroelasticity  

Given a value for the Poisson’s ratio of the solid matrix (ν) it can be shown (Rice & Cleary, 

1976; Van der Kamp & Gale, 1983) that the stress-strain relationship for a fluid-filled porous 

medium is: 
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Typically, the Poisson’s ratio takes a value ν ≈ 0.2 for geological materials (Table 6.1), and 

so ν = 0.2 is assumed throughout this chapter. With the convention that a repeated suffix 

indicates summation, equation (6.12) yields: 
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Equation (6.13) can be used to provide a physical interpretation for the effective stress ratio 

(α). For a solid medium, the volume dilatation ( )kkê  is proportional to the confining pressure 

 (Figure 6.1b). For a poroelastic medium, however, equation (6.13) shows that the 

volume dilatation is proportional to the so-called effective pressure 

( cp̂ )

( )ppc ˆˆ α− . 

 

This dissertation is concerned with the effect of tidal loading at periods of ~12 h and greater. 

This timescale is much greater than the time taken for seismic waves (speed > 1 km.s-1), to 

cover the lengthscales appropriate to hydrothermal systems (< 10 km). Consequently, the 

stresses due to tidal loading of the seafloor are, effectively, transmitted instantaneously 

throughout a subseafloor convection cell. The equations of compatibility for an elastic 

medium (Love, 1927) can be applied to equation (6.12) to give an equation expressing elastic 

equilibrium: 
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Equation (6.14) can be contracted on the suffices to yield: 
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The conservation of pore fluid is expressed by the equation: 
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where k is the permeability of the rock matrix and µ is the dynamic viscosity of the 

interstitial fluid. 

In general, solutions to problems of poroelastic loading are found by solving equations (6.14) 

and (6.16) for the incremental pore pressure ( )p̂  and the incremental stress tensor ( )ijσ̂

kk

. In 

certain simple cases, however, the number of unknowns reduces to two - and p̂ σ̂  - and 

solutions are found by solving equations (6.15) and (6.16). Furthermore, if kkσ̂  is known, 

equation (6.16) becomes a forced conduction equation for the incremental pore pressure ( )p̂  

with a diffusivity (κ) defined by 

 
S

k
µ

κ =                (6.17) 

The permeability of the seafloor (k) is very poorly constrained (Table 6.1). Consequently, it 

is helpful to define a scaled diffusivity ((µS)-1) in order to examine the dependence of the 

diffusivity (κ) on the temperature (T) of the interstitial fluid.  
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Figure 6.5: The dependence of the scaled diffusivity ((µS)-1) on the

thermodynamic state of the interstitial fluid in the large,

intermediate and small porosity regimes with Kg = 50 GPa, Km = 30

GPa. (The true diffusivity, in m2.s-1 is k·(µS)-1). The interstitial fluid

is assumed to be pure water. Thermodynamic data from the tables

embedded in the HYDROTHERM code. (a),(b) φ0 = 0.05 (large).

(c),(d) φ0 = 0.001 (intermediate). (e),(f) φ0 = 0.00005 (small). (107

Pa corresponds to 1 km below sea level.) 

 

Figure 6.5 shows how the scaled diffusivity depends on pressure and temperature in each of 

the three porosity regimes for Kg = 50 GPa and Km = 30 GPa. In the large porosity regime - 

when (φ0 / φc) > 1 - equations (6.7) and (6.17) imply that: 
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Consequently the diffusivity is proportional to (Kf / µ) (Figures 6.5a,b), and is maximised at 

~200°C for seafloor pressures.  

Conversely, in the small porosity regime - when (φ0 / φc) > 1 - equations (6.8) and (6.17) 

imply that: 

  
µαµ
11
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Consequently, the diffusivity is proportional to the inverse viscosity (µ-1) (Figures 6.5e,f), 

and is maximised at ~400°C for seafloor pressures.  

 

In summary, Figure 6.5 shows that the scaled diffusivity is maximised somewhere between 

~200°C and ~400°C for all seafloor pressures, depending on the value of the porosity. 

Hence, assuming that crustal permeability is homogeneous, diffusive incremental pore 

pressures due to tidal loading will tend to propagate furthest in regions of a subseafloor 

convection cell where the temperature is between ~200°C and ~400°C. 

 

Equations (6.16) and (6.17) show that the propagation of incremental pore pressure is 

described by a diffusion equation with diffusivity κ. When tidal loading is applied to the 

seafloor at angular frequency ω, diffusion occurs over a characteristic lengthscale known as 

the skindepth (d) defined by: 

  
S

kd
µωω

κ 122
==              (6.20) 

It has already been remarked that the crustal permeability (k) is very poorly constrained for 

seafloor hydrothermal systems. Nonetheless, using equation (6.20) it is possible to make 

some general deductions concerning the magnitude of the skindepth (d). Figure 6.6 shows 

how the skindepth for semi-diurnal loading (ω = 1.4·10-4 s-1) depends on permeability for 

typical values of (µS)-1 taken from Figure 6.5. In broad terms, the minimum plausible 

skindepth for a semi-diurnal tidal signal in seafloor crust is d ~ 1 m when k = 10-17 m2 and 

the fluid is at ~2°C. Conversely, the maximum plausible skindepth is d ~ 10,000 m when k = 

10-10 m2 and the fluid is at ~400°C. It is important to note that this range of skindepths spans 

a very wide range. A skindepth of 1 m is very much less than the typical dimensions of a 

seafloor convection cell (H ~ 1000 m, L ~ 500 m) while a skindepth of 10,000 m is 

considerably larger. The dependence of the skindepth on angular frequency (ω) in equation 
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(6.20) implies that the skindepths for diurnal components are greater than those for semi-

diurnal components by a factor of √2. 

 

10-15 10-10100

105 semi-diurnal skindepth, d (m)

permeability, k (m2)

d 
(m
)

2°C  
400°C

Figure 6.6: The variation of the skindepth (d) for semi-diurnal tidal loading as a

function of permeability, k. Using the values from Figure 6.5c,d it is

assumed that (µS)-1=2·10-13 s-1 at ~2°C, and (µS)-1=10-15 s-1 at 400°C.

Note the logarithmic scales on both axes.  

 

It is now possible to describe qualitatively the nature of solutions of equation (6.16) in a 

seafloor under tidal loading, according to the size of the skindepth (d). By considering the 

case of a layered seafloor, Wang & Davis (1996) demonstrated that a diffusive pressure 

signal is induced wherever there is a sharp contrast in the elastic properties of the seafloor. In 

the case of the idealised convection cell of Chapter 5, there are two such sharp boundaries in 

elastic properties– the seafloor itself, and the boundary separating liquid-like water from gas-

like water which is approximated by the 400°C isotherm. The amplitude of the diffusive 

pressure signal decays exponentially over a lengthscale d away from the boundaries in elastic 

properties. In fact at distances greater than 2d from these boundaries, the diffusive pressure 

signal is negligible and the solution is dominated by the ‘instantaneous pressure signal’: 

  c
kk pp ˆ
3
ˆ

ˆ β
σ

β =−≈                 (6.21) 

It should be noted that the approximate solution of equation (6.21) applies at every point of 

the cell which is more than a distance 2d from a sharp boundary in elastic properties. 

Consequently, the magnitude of the skindepth (d) is of great importance. In regions more 

than a few skindepths from boundaries in elastic properties, the incremental pore pressure is 

in phase with the tidal loading. Therefore, if the skindepth is very small (d < 10 m) the 

incremental pore pressure is well approximated by equation (6.21) over almost all of the 
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subseafloor. It follows that the incremental pore pressure will be in phase with the ocean tide 

over most of the cell, although its amplitude varies according to any spatial variations in the 

Skempton ratio (β). In contrast, if the skindepth is comparable with the lengthscales of the 

cell (d > 100 m), then the incremental pore pressure at depth is generally not in phase with 

the ocean tide. 

In Section 6.3, these qualitative remarks above concerning the incremental pore pressure 

response to tidal loading are illustrated with analytical solutions and numerical simulations.  

6.3 Tidal loading of the seafloor 

This section is concerned with the effect of loading by the ocean tide on a poroelastic 

seafloor. The nature of the global ocean tide is discussed in Chapter 2, where it is illustrated 

with the use of cotidal maps (Figure 2.8). The area of seafloor associated with an individual 

hydrothermal system typically has a lengthscale of at most 1 km. This is much smaller than 

the typical wavelength of the ocean tide. Consequently, it is reasonable to suppose that at any 

time the tidal loading is uniform over the area of seafloor associated with an individual 

hydrothermal convection cell.   

( )tzp ,ˆ ( )tzp ,ˆ

permeability (k) 
extends to z = -∞ 

seafloor 
z = 0 

x

ztidal loading: pTcos(ωt)

permeability (k) 
extends to z = -H 

seafloor
z = 0

x

ztidal loading: pTcos(ωt) (b)(a) 

Figure 6.7: The loading of a 1-d seafloor by the ocean tide. It is supposed that

there is no horizontal spatial variation. (a) Infinite 1-d halfspace.

(b) Finite permeable layer of depth H.   

 

6.3.1 Tidal loading of a 1-d seafloor 

Consider the uniform tidal loading of a seafloor in which the poroelastic properties are 

homogeneous and the incremental pore pressure is ( )tzp ,ˆ  (Figure 6.7a,b). Symmetry implies 
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that there is no horizontal strain ( )0ˆˆ 2211 == ee

( )t

. Since the governing equations are linear, the 

incremental pore pressure due to a single component of the ocean tide can be considered in 

isolation (Table 2.1). The imposed pressure on the seafloor is therefore taken to be a time-

harmonic oscillation of magnitude pT and angular frequency ω. In complex notation, the 

seafloor boundary condition on the incremental pore pressure is: 

ω
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  ( ) iptp T exp,0ˆ =               (6.22) 

The tides in the open oceans generally have an amplitude of ~1 m (Figure 2.8), and so pT 

typically has an amplitude of about 10 kPa. 

6.3.1.1 Incremental pore pressure in an infinite halfspace 

The simplest model is one in which the permeable crust is of infinite extent below the 

seafloor (Figure 6.7a).  The solution for this infinite halfspace is derived by Van der Kamp & 

Gale (1983) and is discussed in detail by Wang & Davis (1996). It is of fundamental 

importance, and is reproduced below. 

Van der Kamp & Gale (1983) show that the incremental vertical stress is the same for all 

depths: 

ipT−= ωσ expˆ33              (6.23) 

Consequently, equation (6.16) can be re-arranged to read: 
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−         (6.24) )

)Since ( tz,ˆ 33σ  is known from equation (6.23), equation (6.24) constitutes a forced diffusion 

equation for the incremental pore pressure . 

From equation (6.24), it is possible to define a ‘1-d diffusivity’ (κ1d) according to: 

  ( )d ν
κ 




−−

=
13

13
1             (6.25) 

The assumption of a 1-d seafloor leads to the introduction of the dimensionless factor in 

square brackets, which distinguishes κ1d (equation (6.25)) from κ (equation (6.17)). 

Equation (6.24) also suggests the definition of a ‘1-d loading efficiency’ (γ1d) according to: 

  ( )νγ 



−−

=
13

1
1d             (6.26) 

The assumption a 1-d seafloor leads to the introduction of the dimensionless factor in square 

brackets which distinguishes γ1d (equation (6.26)) from the Skempton ratio, β (equation 

(6.9)).   
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Referring to the 1-d parameters of equations (6.25) and (6.26), equation (6.24) yields an 

equation governing the diffusion of incremental pore pressure in a homogeneous 1-d 

seafloor: 

( )( )tip
tt

p
z

p
Tdd ωγκ exp

ˆˆ
12

2

1 −
∂
∂

+
∂
∂

=
∂
∂            (6.27) 

By analogy with the skindepth (d) (equation (6.20)), a ‘1d-skindepth’, representing the 

lengthscale of diffusion of the incremental pore pressure, can be defined by: 

  
ω
κ d

dd 1
1

2
=                (6.28) 

Since κ1d and γ1d are not here functions of space, equations (6.22) and (6.27) have the 

(complex) solution:  
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Equation (6.29) can be written in real notation as: 
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11
1          (6.30) 

Typical depth profiles associated with this solution are shown in Figure 6.8. It is 

conceptually useful to split the solution of equation (6.30) into the sum of an instantaneous 

signal (pTγ1dcos(ωt)) and a diffusive signal (pT(1 - γ1d)exp(z/d1d)cos(z/d1d + ωt)). The 

instantaneous signal is in phase with the ocean tide and has magnitude pTγ1d for all depths. In 

contrast, the diffusive signal decays exponentially from the seafloor over a lengthscale d1d 

and is generally not in phase with the ocean tide. Figure 6.8 shows that the nature of the 

incremental pore pressure solution depends on the value of z/d1d. Close to the seafloor (i.e. 

within one or two skindepths) the incremental pore pressure contains a significant diffusive 

component. Further from the seafloor, however, the incremental pore pressure is dominated 

by the instantaneous signal (pTγ1dcos(ωt)). Therefore the 1-d loading efficiency (γ1d) 

represents the proportion of the tidal load which is borne by the interstitial fluid at depths 

greater than 2 skindepths.  
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Figure 6.8: Typical depth profiles of the incremental pore pressure ( ) as

a function of dimensionless depth (-z/d1d) in an infinite halfspace at

various times during the tidal cycle with γ1d = 0.5. High tide occurs

when ωt=0. Half tide occurs when ωt=π/2. Maximum vertical

velocity at the seafloor occurs when ωt=3π/4. The diffusive

pressure signal is limited to depths for which (-z/d1d) < ~2. 

p/^ pT^

 

6.3.1.2 Incremental velocity in an infinite halfspace 

Previous authors have been concerned solely with the incremental pore pressure (Van der 

Kamp & Gale, 1983; Wang & Davis, 1996). In contrast, the aim here is to investigate the 

flow of interstitial fluids induced by the incremental pore pressure. In other words, the point 

of interest is the spatial gradient of the incremental pore pressure rather than the incremental 

pore pressure itself. The tidally induced incremental velocity at the seafloor (z = 0) is of 

particular interest since it can be measured by instruments such as Medusa (Chapter 4).   

Applying Darcy’s law to equation (6.29), the incremental vertical velocity (in complex 

notation) is: 
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Therefore the tidally induced incremental velocity at the seafloor is: 
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−−=            (6.32) 

Equation (6.32) shows that the tidally induced outflow of water at the seafloor leads the 

ocean tide by a radian angle arg(-(1+i)) = -3π/4 radians. In other words, the tidally induced 

outflow of pore water at the seafloor lags the ocean tide by +3π/4 radians (or 135°). 

Therefore peak outflow occurs ~4½ hours after high tide for the semi-diurnal components, 
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and ~9 hours after high tide for diurnal components. In principle, this predicted phase lag of 

135° could be compared with observed effluent velocity time-series from the seafloor for 

each harmonic component of the tide (Table 2.1). However, the effluent velocity time-series 

which have been collected to date are too short and too noisy to allow the extraction of 

individual harmonic components (Chapter 4). Comparison of this theory with observation 

will therefore have to await the collection of higher quality data.  

The tidally modulated effluent velocities observed on the seafloor take the form of a small 

incremental velocity (  imposed on a steady background flow (w). From equation (6.32), 

the amplitude of the velocity variations is: 

)ŵ
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11ˆ γ
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−
=               (6.33) 

Assuming that the background flow consists of fluid of density ρ ascending a cold 

hydrostatic pressure gradient (gρ0), the steady velocity (w) is given by: 
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From equations (6.33) and (6.34), it is possible to define the dimensionless magnitude of the 

incremental seafloor velocity as follows: 
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Equation (6.35) expresses the magnitude of the tidal oscillations in effluent velocity as a 

fraction of the background steady velocity. Using the fact that S = α / (Kmβ), and equations 

(6.25), (6.26) and (6.28), it can be shown that: 
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Equations (6.35) and (6.36) then imply that the dimensionless magnitude of the incremental 

seafloor velocity is: 
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The terms in square brackets in equation (6.37) can be considered in turn, to reveal how 

variations in parameter values affect the magnitude of the velocity perturbations observed at 

the seafloor. Term (a) contains quantities which are either fixed constants or elastic 

parameters of the rock matrix, while term (b) shows that the dimensionless incremental 

velocity increases with the frequency of the loading. Consequently, under this theory, 
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seafloor velocity signals are predicted to be high-pass filtered relative to the ocean tide. 

Equation (6.37) predicts that the ratio of semi-diurnal to diurnal amplitudes in the outflow 

velocity signal is greater than that in the ocean tide by a factor of √2. Term (c) shows that the 

dimensionless magnitude of the incremental velocity decreases as the permeability increases. 

Term (d) reveals the dependence of the velocity perturbations on the thermodynamic state of 

the pore water and can be used to define a ‘tidal flow magnitude parameter’ (MT) as follows:  
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=

01

11

d

d
TM              (6.38) 

Graphs of MT are presented in Figure 6.9 over a range of p-T conditions appropriate to 

hydrothermal systems. When the porosity (φ0) is very small, γ1d ≈ 1 and so: 

  ( )ρρ
µ
−

≈
0

TM               (6.39) 

Figure 6.9 shows that MT is minimised at ~400°C for all seafloor pressures. Hence, the ratio 

of the tidally induced incremental velocity to the buoyancy driven background velocity is a 

decreasing function of temperature for the temperatures below ~400°C which characterise 

the discharge zone of a subseafloor convection cell (Chapter 5). Therefore equations (6.37) 

and (6.38) predict that the tidal variations in effluent velocity are most significant as a 

fraction of the steady flow for:  

(1) cool effluent 

(2) high frequency loading 

(3) low permeabilities 

 

The observation that effluent velocity variations are greatest for high frequency loading 

implies that the relative magnitudes of semi-diurnal to diurnal components will be greater in 

an effluent velocity time-series than in the local ocean tide. It has already been remarked 

(Chapter 2) that the semi-diurnal components of the ocean tide are typically larger than the 

diurnal components. For these two reasons, it is expected that tidal variations in effluent 

velocity will, in general, be dominated by semi-diurnal frequencies.  In the subsequent 

sections it is assumed for simplicity that the load at the seafloor is a pure sine wave of 

angular frequency ω. By linearity, the diurnal and semi-diurnal components may be 

considered separately. In the case of semi-diurnal loading ω = 1.408⋅10-4 rad.s-1, while for 

diurnal loading ω = 7.038⋅10-5 rad.s-1. 
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Figure 6.9: The dependence of the tidal flow magnitude parameter (MT) on the

thermodynamic state of the interstitial fluid in the large,

intermediate and small porosity regimes with Kg = 50 GPa, Km = 30

GPa. The magnitude of the velocity perturbations at the seafloor,

relative to the background velocity, is proportional to MT.

Interstitial fluid is pure water. Thermodynamic data from the tables

embedded in the HYDROTHERM code. (a), (b) φ0 = 0.05 (large).

(c), (d) φ0 = 0.001 (intermediate). (e), (f) φ0 = 0.00005 (small). (107

Pa corresponds to 1 km below sea level.) 
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)

6.3.1.3 Incremental temperature in an infinite halfspace 

In the previous section, the incremental pore pressure solution of Van der Kamp & Gale 

(1983)  is extended to yield an expression for the incremental velocity ( )( tzp ,ˆ ( )( )tzw ,ˆ . In 

this section, an expression for a third quantity of interest - the incremental temperature 

( )( )tzT ,ˆ  - is derived. 
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( )tzTzT ,ˆ

0 +Γ−

( )tzww ,ˆ+
gzp 00 ρ−

zT Γ−0

wsteady velocity:  

steady temperature:  
steady pressure:  

velocity:  

temperature:  
pressure:  

seafloor 
z = 0 

x

zno tidal loading 

seafloor
z = 0

x

ztidal loading: pTexp(iωt) (b)(a) 

Figure 6.10: The incremental temperature ( due to tidal loading, just

below the seafloor. (a) In the absence of tidal loading, the vertical

velocity is assumed to be constant while the pressure and

temperature are linear functions of depth. (b) Under tidal loading,

the pressure, velocity and temperature are all tidally modulated. 

loading: flow: 

 

For simplicity, it is supposed that pressure and temperature are linear functions of depth in 

the absence of tidal loading (Figure 6.10a). This is approximately true in the section of the 

hydrothermal discharge zone which lies just below the seafloor (Figure 5.1). If the pressure 

gradient is cold hydrostatic (Section 5.3) and the temperature gradient is denoted by Γ, then: 

  ( ) zgpzp 00 ρ−=                (6.40) 

  T                (6.41) ( ) zTz Γ−= 0

It is supposed for simplicity that the density (ρ) and dynamic viscosity (µ) do not vary with 

depth. The buoyancy-driven vertical velocity (in the absence of tidal loading) therefore has 

the constant value: 
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−
= 0gk

g
dz
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This steady state flow (Figure 6.10a) satisfies mass conservation because: 
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  ( ) 0=
∂
∂ w
z
ρ                (6.43) 

However, the advective energy accumulation per unit volume (Q) is non-zero because: 
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∂
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−= ρρ              (6.44) 

Supposing for simplicity that enthalpy is a linear function of temperature - h(p,T) = cpT - it 

then follows that: 

    Γ= wcQ pρ                (6.45) 

In a real seafloor system, the advective energy accumulation of equation (6.45) would be 

balanced by the lateral conductive flow of heat away from the discharge zone. It is not 

possible to incorporate lateral conduction into this model explicitly because it is assumed 

that there is only one spatial dimension. However, energy can be balanced by assuming that 

heat is removed at a rate Q per unit volume at all depths below the seafloor. In other words, 

heat sinks must be introduced to simulate the effect of conductive heat loss and ensure that 

energy is balanced in the steady state.  

 

It is supposed that the steady, one-dimensional solution described above is disturbed by tidal 

loading (pTexp(iωt)) on the seafloor (z = 0) (Figure 6.10b). The pressure, velocity and 

temperature are then perturbed from their steady values as follows: 
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Assuming that the incremental pressure ( )( )tzp ,ˆ  and incremental velocity  are given 

by the 1-d solutions discussed in previous sections (equations (6.29) and (6.31)), an 

expression for the incremental temperature 

( )( tzw ,ˆ )

( )( )tzT ,ˆ  can be derived. 

If tidally induced changes in fluid density are negligible, the conservation of energy under 

tidal loading is expressed by the advection-diffusion equation: 
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Equation (6.47) can be linearised by neglecting the product of any two incremental 

properties. Using equations (6.41) and (6.45), this linearisation yields:  
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Chapter 6: Poroelasticity and tidal loading   187
 
The steady state velocity (w) and the steady state temperature gradient (Γ) are both constant. 

Therefore equation (6.48) can be used to derive an expression for the incremental 

temperature ( )( )tzT ,ˆ  in terms of the incremental velocity ( )( )tzw ,ˆ . Equation (6.31) shows 

that the tidally induced incremental velocity has the form: 
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where A is a complex number expressing the amplitude and the phase relative to the ocean 

tide. 

Equation (6.48) suggests that the incremental temperature has a similar form to equation 

(6.49). Accordingly, it is postulated that: 
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where the value of the unknown complex constant (B) remains to be calculated. 

Equations (6.48), (6.49) and (6.50) together yield an expression linking the complex 

amplitudes A and B: 
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Equation (6.51) shows that the incremental temperature ( )( )tzT ,ˆ  lags the incremental 

velocity  by the radian angle: ( )( tzw ,ˆ )
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Since ω, d1d, and w are all positive real numbers, equation (6.52) implies that the incremental 

temperature lags the incremental velocity by an angle in the range [π/4, π/2] (i.e. between 45° 

and 90°). The exact value of this phase lag depends on the value of the dimensionless 

parameter: 
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For semi-diurnal tidal loading, ω = 1.4·10-4 s-1 and all parameters except the permeability (k) 

are known accurately. Assuming typical values (g = 9.8 m.s-2, (ρ0-ρ) = 500 kg.m-3, µ = 5·10-5 

Pa.s, S = 5·10-9 Pa-1, ν = 0.2, α = 0.5, β = 0.5), suggests that, in SI units: 
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Using equations (6.52) and (6.54), the phase difference between the incremental velocity and 

the incremental temperature can be graphed as a function of permeability (k) (Figure 6.11). 

Table 6.1 suggests that the permeability of the seafloor lies between 10-17 m2 and 10-10 m2. 

Figure 6.11 shows that the incremental temperature lags the incremental velocity by almost 

exactly 90° within this range. Phase lags significantly smaller than 90° are only possible for 

permeabilities greater than 10-9 m2. Such high permeabilities could only exist if there were 

considerable cracking of the discharge zone. Consequently, seafloor measurements of the 

phase lag between effluent velocity and temperature are diagnostic. Phase lags significantly 

below 90° present evidence for unusually high seafloor permeability.   

 

Figure 6.11: The predicted phase lag of the incremental temperature 

behind the incremental velocity as a function of

permeability (k) for typical seafloor parameter values. Note the

logarithmic scale on the horizontal axis. 
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In the infinite halfspace model, it has been shown that the incremental velocity at the 

seafloor lags the ocean tide by 135°. Consequently, the infinite halfspace model predicts that 

the incremental temperature at the seafloor lags the ocean tide by an angle in the range [180°, 

225°]. Furthermore, for semi-diurnal loading and permeabilities less than 10-10 m2, the phase 

lag is predicted to be almost exactly equal to 225° (Figure 6.11). 

 

6.3.1.4  Incremental pore pressure in a finite permeable layer 

The assumption of an infinite halfspace is a significant simplification, and it is of interest to 

extend the well-established halfspace model of Van der Kamp & Gale (1983) to the case of a 
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finite permeable layer. It is therefore supposed in this section that the crust is only permeable 

between z = 0 and z = -H  (Figure 6.6b). 

The new boundary condition ( )( 0,ˆ )=− tHw  means that the solution of equation (6.27), 

which is given by equation (6.29) for an infinite halfspace, is now given by: 
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6.3.1.5 Incremental velocity in a finite permeable layer 

By Darcy’s law, it follows from equation (6.55) that the incremental velocity for a finite 

permeable layer is given (in complex notation) by: 
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The incremental velocity on the seafloor is then: 
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It should be noted that the presence of the impermeable boundary at z = -H affects both the 

magnitude and phase of the outflow at the seafloor (equation (6.57)), compared with the 

solution for an infinite halfspace (equation (6.32)). 

It can be shown that: 
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and that: 
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Therefore the tidally induced outflow at the seafloor has magnitude: 
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It has already been shown (equation (6.32)) that the effluent velocity at the seafloor lags the 

ocean tide by a radian angle (3π / 4) in the case of an infinite halfspace. It follows from 

equation (6.59) that the presence of an impermeable boundary at z = -H means that the 

effluent velocity at the seafloor lags the ocean tide by a radian angle: 
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The predicted magnitude (equation (6.60)) and phase lag (equation (6.61)) of the incremental 

velocity at the seafloor are shown in Figure 6.12 as functions of the dimensionless depth of 

the impermeable boundary (H / d1d). 

 

0 1 2 3 4 5
0

0.5

1

1.5
amplitude factor for velocity

depth of impermeable boundary: H/d 1d

fac
tor

0 1 2 3 4 5
90

100

110

120

130

140
phase lag of velocity behind ocean tide (°)

depth of impermeable boundary: H/d1d

ph
as
e 
la
g 
(°)
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Figure 6.12: The effect of an impermeable layer at depth H on the magnitude

and phase of the incremental velocity at the seafloor. The

horizontal axes measure the dimensionless depth of the

impermeable layer (H/d1d). (a) The amplitude of the outflow as a

fraction of the infinite halfspace solution, which is approached as

H/d1d → ∞. (b) The lag of the outflow behind the ocean tide in

degrees, which approaches the infinite halfspace value of 135° as

H/d1d → ∞.
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In summary, the incremental velocity at the seafloor lags the ocean tide by an angle between 

90° and 135°, depending on the relative magnitude of the 1-d skindepth (d1d) and depth over 

which the seafloor crust is permeable (H). If the skindepth is much smaller than the thickness 

of the permeable layer (H / d1d>>1) the incremental velocity follows the infinite halfspace 

solution and lags the ocean tide by 135°. In contrast, if the skindepth is greater than H/2 (so 

that H / d1d < 1), then the incremental velocity at the seafloor is reduced in magnitude 

compared to the infinite halfspace solution (Figure 6.12a), and its phase lag behind the ocean 

tide takes a value in the range [90°, 135°]. When sufficient high quality data are available, 

observed values of the phase lag between the ocean tide and the effluent could be used to 

constrain the ratio (H / d1d). 

6.3.2 Tidal loading of a 2-d seafloor 

In Section 6.3.1, the investigation of tidal loading is restricted to one spatial dimension for 

simplicity. In this section, the same principles are extended to two dimensions by 

considering the tidal loading of the simulated convection cell of Chapter 5. The numerical 

steady state solution (Figure 5.4) defines the properties of the interstitial fluid as functions of 

space. Figure 6.13 shows the distribution of pressure (p), temperature (T), density (ρ) and 

fluid compressibility (Kf
-1) within the simulated convection cell. It should be noted that the 

seafloor is placed at z = 0 m in these figures in common with the convention followed 

throughout this chapter. (In Chapter 5, however, it is more convenient to place the seafloor at 

z = 1000 m). The division between the cold, dense, liquid-like region below ~400°C and the 

hot, buoyant, gas-like region above ~400°C is clearly shown in Figure 6.13c,d. Under tidal 

loading, it is expected that the differing incremental pore pressures in these regions will drive 

a tidally modulated flow. In the following sections, a numerical simulation is used to 

examine this flow.   

6.3.2.1 Governing equations in 2-d 

In Section 6.3.1.1 the equations governing the propagation of incremental pore pressure in 

one dimension are derived (Van der Kamp & Gale, 1983). In this section, the analogous 

equations governing the incremental stress ( )( )tzxij ,,σ̂  and incremental pore pressure 

 in two spatial dimensions are derived. In this case, the assumption of only two 

spatial dimensions implies that 

(( tzxp ,,ˆ ))
0ˆ22 =e . Therefore equations (6.12) and (6.13) imply that: 

( )( ) ( )pkk ˆ21ˆˆ1ˆ 3311 νασσνσ −−++=                   (6.62) 
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(a) (b)

(c) (d)

Figure 6.13: The thermodynamic properties of the fluid in the numerically

simulated convection cell of Section 5.3. In each plot, the domain

is the same as that shown in Figure 5.4a. The seafloor is at z = 0 m

and a magma chamber lies at z = -1000 m. On all plots the

isotherms at 300°C, 400°C and 500°C are shown in white. The

change from liquid-like properties to gas-like properties occurs at

~400°C. (a) The pore pressure, p. (b) The temperature, T. (c) The

density, ρ. (d) The fluid compressibility, Kf
-1.  

 

It then follows from equation (6.14) that: 
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Equation (6.16) implies that: 
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Equation (6.65) suggests the definition of a 2-d diffusivity according to: 
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and a 2-d loading efficiency according to: 
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It then follows that conservation of fluid mass is expressed by: 
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Equations (6.63), (6.64) and (6.68) are the governing equations for the three scalar fields 

, ( )tzxp ,,ˆ ( tzx ,,ˆ11 )σ  and ( tzx ,,ˆ 33 )σ . A numerical solution for these fields can be found 

when tidal loading (pTcos(ωt)) is applied to the seafloor (z = 0). 

6.3.2.2 Numerical simulation 

Boundary conditions are required in order to obtain a numerical solution to equations (6.63), 

(6.64) and (6.68). Considering first the incremental pore pressure, the tidal loading on the 

seafloor imposes the condition: 

  ( ) ( )0expˆ == ztipp T ω              (6.69) 

The bottom boundary (z = -1000 m) is taken to be impermeable, which implies that: 
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It is expected that the one dimensional solution of Section 6.3.1.1 will apply on the side 

boundaries (x = ±500 m). If the 1-d skindepth and 1-d loading efficiency for cold water are 

labelled dc and γc respectively, then equation (6.27) implies the boundary conditions: 

  ( ) ( ) ( ) ( )
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Following Van der Kamp & Gale (1983) it is assumed that the boundary condition for the 

vertical stress is the same on all four boundaries: 

  ( tipT )ωσ exp33 −=               (6.72) 

Finally, in order to ensure that 0ˆ22 =e , the following condition must be met on all four 

boundaries: 
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Since the tidal loading is assumed to occur at a single angular frequency ω, it follows that the 

incremental pressure and stress can be written in the form: 
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The governing equations (6.63), (6.64), (6.68) and the boundary conditions (6.69) – (6.73) 

can then be solved using standard finite difference techniques (Press et al., 1986) to find the 

complex amplitudes P(x,z), Σ11(x,z) and Σ33(x,z).  

 

Unfortunately, only a very limited amount of computer time was available to perform 

calculations of this nature, and the parameters used (Km = 0.5 GPa, Kg = 50 GPa, ν = 0.1, φ0 

= 0.1, k = 10-12 m2) are not consistent with those assumed elsewhere in this dissertation 

(Chapter 5). Computer facilities were not available to rerun the simulations with consistent 

parameter values. The results (Figures 6.14 – 6.16) should therefore be viewed as illustrative 

of a general principle rather than definitive. Nonetheless, the simulations cover a sufficiently 

wide range of parameter values to illustrate the different incremental pore pressure regimes 

which apply according to the size of the cold skindepth dc. The subscript ‘c’ is used to denote 

the values of the loading efficiency (γc) and skindepth (dc) obtained for cold water from 

equations (6.26) and (6.28). Similarly, the subscript ‘h’ is used to denote the values (γh and 

dh) obtained for hot (~400°C), gas-like water. In these numerical examples, γc ≈ 0.93 and γh ≈ 

0.14. The seafloor parameter known to the least precision is the permeability (k), which can 

vary over several orders of magnitude (Table 6.1). Equation (6.28) shows that cold skindepth 

dc depends on the ratio (k / ω), and so the effect of varying k is simulated numerically by 

varying ω.  

 

Figure 6.14 shows the calculated incremental pore pressure for tidal loading with k = 10-12 

m2, ω = 0.1 s-1. In this case the cold skindepth (dc = 2.6 m) is much smaller than the 

dimensions of the cell, and so the diffusive part of the incremental pore pressure is restricted 

to a region of lengthscale 2dc = 5.2 m around the seafloor and the boundary between the 

liquid-like and gas-like regions. At distances greater than 2dc from these boundaries in elastic 

properties, the solution takes a form equivalent to the instantaneous pressure signal of 

equation (6.21). In other words the solution is approximately ( tipp Tc )ωγ expˆ ≈  in the 

liquid-like region of the cell and ( )tipp Th ωγ expˆ ≈  in the gas-like region of the cell. 

Therefore the incremental pore pressure is in phase with the tidal loading over most of the 

convection cell. 
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(d)(c) 

(b)(a) 

Figure 6.14: The complex incremental pore pressure amplitude P(x,z) with pT =

10 kPa, dc = 2.6 m, γc = 0.94 and γh = 0.14. (a) The real part of the

solution, representing the incremental pore pressure at high tide. (b)

The imaginary part of the solution, representing the incremental

pore pressure at rising half tide. (c) The magnitude of the

incremental pore pressure. (d) The phase of the incremental pore

pressure – expressed as a phase lag behind the ocean tide in

degrees. In all figures, the isotherms at 300°C, 400°C and 500°C

are drawn in white to illustrate the structure of the underlying

convection cell (Figure 5.4). 

 

Figure 6.15 shows the incremental pore pressure results with k = 10-12 m2, ω = 0.001 s-1. In 

this case, the larger value of the cold skindepth (dc = 26 m) explains why the incremental 

pore pressure response of Figure 6.15 does not follow the boundaries in fluid properties 

(Figure 6.13) as closely as in Figure 6.14. The larger skindepth has led to a ‘smearing’ of the 

response across the boundary between the liquid-like and gas-like regions. 
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(d)(c) 

(b)(a) 

Figure 6.15: The complex incremental pore pressure amplitude P(x,z) with pT =

10 kPa, dc = 26 m, γc = 0.94 and γh = 0.14. (a) The real part of the

solution, representing the incremental pore pressure at high tide. (b)

The imaginary part of the solution, representing the incremental

pore pressure at falling half tide. (c) The magnitude of the

incremental pore pressure. (d) The phase of the incremental pore

pressure – expressed as a phase lag behind the ocean tide in

degrees. In all figures, the isotherms at 300°C, 400°C and 500°C

are drawn in white to illustrate the structure of the underlying

convection cell (Figure 5.4). 

 

Finally, Figure 6.16 shows the incremental pore pressure results with k = 10-12 m2 and ω = 

0.000001 s-1.  In this case, the cold skindepth (dc = 816 m) is sufficiently large that 

incremental pore pressure response is dominated by the diffusive component over the entire 

convection cell. 
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(d)(c) 

(b)(a) 

Figure 6.16: The complex incremental pore pressure amplitude P(x,z) with pT =

10 kPa, dc = 816 m, γc = 0.94 and γh = 0.14. (a) The real part of the

solution, representing the incremental pore pressure at high tide. (b)

The imaginary part of the solution, representing the incremental

pore pressure at rising half tide. (c) The magnitude of the

incremental pore pressure. (d) The phase of the incremental pore

pressure – expressed as a phase lag behind the ocean tide in

degrees. In all figures, the isotherms at 300°C, 400°C and 500°C

are drawn in white to illustrate the structure of the underlying

convection cell (Figure 5.4). 

In summary, Figures 6.14 – 6.16 illustrate the importance of the magnitude of the skindepth 

to the nature of the incremental pore pressure solution. 

6.4 Conclusions 

In this chapter, the application of the theory of poroelasticity to the tidal loading of 

subseafloor hydrothermal convection cells has been investigated. 
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The thermodynamic properties of water exert an important influence on the principal 

parameters of poroelasticity. At seafloor pressures, there is a marked difference between the 

properties of liquid-like water below ~400°C and gas-like water above ~400°C. 

Consequently, it is predicted that the incremental pore pressure response to tidal loading in a 

hydrothermal convection cell varies spatially. The difference in response between the liquid-

like and gas-like regions is greatest when the porosity is large.  

 

The characteristic lengthscale of pore pressure diffusion induced by tidal loading is the 

skindepth (d). The skindepth depends on the permeability (k) which is very poorly 

constrained. For semi-diurnal loading, the skindepth can range from d = 1 m (k = 10-17 m2) to 

d = 10,000 m (k = 10-10 m2). The nature of the incremental pore pressure response depends 

on the magnitude of the skindepth compared with the lengthscales of the subseafloor 

convection cell. When the skindepth is much smaller than the lengthscales of the cell, the 

incremental pore pressure is given, over most of the cell, by the instantaneous response 

which is in phase with the ocean tide. 

 

Van der Kamp & Gale (1983) derived an analytical solution for the incremental pore 

pressure in an infinite halfspace subject to tidal loading. In Section 6.3.1 their solution is 

extended in a number of ways. Firstly, it is used to provide expressions for the incremental 

velocity and temperature in an infinite halfspace. Secondly, an analogous incremental pore 

pressure solution is derived for the case of a permeable layer of finite vertical extent. This 

solution is also used to derive expressions for the incremental velocity and temperature in a 

finite permeable layer. 

 

In the case of an infinite halfspace, it is shown that the tidally induced outflow at the seafloor 

lags the ocean tide by 135° for each tidal component. The magnitude of this tidally induced 

velocity is considered as a fraction of the steady effluent velocity. It is shown that the tidal 

modulations are greatest (as proportion of the steady effluent velocity) when the effluent is 

cool, the permeability is low and the frequency of the tidal loading is high. This last 

observation implies that the tidal modulations of effluent velocity measured at the seafloor 

are high-pass filtered relative to the ocean tide. In other words, semi-diurnal components 

should be amplified at the expense of diurnal components in comparison with the ocean tide. 

The incremental temperature in an infinite halfspace is calculated for the region just below 

the seafloor where the pressure and temperature are both linear functions of depth. It is 

 



Chapter 6: Poroelasticity and tidal loading   199
 
shown that the incremental temperature lags the incremental velocity by an angle which lies 

between 45° and 90°. The exact value of the phase lag depends on the permeability. For most 

plausible values of crustal permeability, the phase lag is almost exactly 90°. However, if the 

presence of cracks in the seafloor has led to a greatly enhanced seafloor permeability (>10-10 

m2), the phase lag can take lower values in the range [45°, 90°]. For the infinite halfspace 

model, it follows that the incremental temperature lags the ocean tide by an angle in the 

range [180°, 225°]. The phase lag is almost exactly 225° for when the permeability is less 

than ~10-10 m2, but it approaches 180° as the permeability increases above ~10-10 m2.  

 

In the case of a finite permeable layer of depth H, the behaviour of the analytical solutions is 

controlled by the parameter (H / d1d) which expresses the thickness of the permeable layer in 

skindepths. The tidally induced effluent velocity at the seafloor is shown to lag the ocean tide 

by an angle in the range [90°, 135°]. The phase lag is almost exactly 135° for (H / d1d) > 2, 

but it approaches 90° as (H / d1d) → 0. The amplitude of the tidally induced effluent velocity 

at the seafloor is compared with the result for an infinite halfspace. The amplitude of the 

outflow differs significantly from infinite halfspace result when (H / d1d) < 2 and tends to 

zero as (H / d1d) → 0. The incremental temperature in a finite permeable layer lags the 

incremental velocity by an angle in the range [45°, 90°] in exactly the same way as for an 

infinite halfspace. Consequently, the tidally induced temperature variations at the seafloor 

lag the ocean tide by an angle in the range [135°, 225°] when the permeable layer is of finite 

thickness. 

 

Consequently, the simple poroelastic results derived here are sufficient to explain effluent 

velocities which lag the ocean tide by an angle in the range [90°, 135°], and effluent 

temperatures which lag the ocean tide by an angle in the range [135°, 225°]. This last range 

is consistent with the general (but by no means universal) observation that effluent 

temperatures tend to be low when the ocean tide is high – a situation that corresponds to a 

phase lag of 180°. 

 

The theoretical predictions outlined above can now be compared with the phase-lags derived 

from real seafloor time-series (Table 4.13). It should be noted that these data refer to several 

different types of seafloor measurement which must be considered separately, and that the 

theory developed in this chapter does not apply to the majority of these signals. 
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The two hydrophone signals concern a physical process (episodic venting) which is not 

considered in any of the models developed in this dissertation. Consequently, no attempt is 

made to explain the phase-lags in these signals. Similarly, the measurements of ‘ambient 

bottom water temperature’ and ‘sub-bottom temperature’ are probably modulated by tidal 

streams and so the tidal loading mechanism explored above is not relevant. The estimated 

phase-lag for the ‘shrimp density’ time-series should be treated with extreme caution because 

the sampling interval of 6 h leads to unreliable estimates of the harmonic constants (Chapter 

4). Consequently, there remain only three signals in Table 4.13 for which the phase-lags can 

be estimated with confidence and for which the theoretical model developed above is 

relevant - the two Medusa measurements of ‘effluent temperature’ and the thermistor 

measurements of ‘borehole temperature’. For these signals, the estimated phase-lags of the 

M2A component behind the local ocean tide are ~180º, 225º and 140º (Table 4.13). These 

values all lie within the predicted range of [135°, 225°] and are therefore consistent with the 

model.  
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