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A two–box model for equator–to–pole planetary heat transport is extended to
include simple atmospheric dynamics. The surface drag coefficient CD is treated as
a free parameter and solutions are calculated analytically in terms of the dimension-
less planetary parameters η (atmospheric thickness), ω (rotation rate) and ξ (advec-
tive capability). Solutions corresponding to maximum entropy production (MEP)
are compared with solutions previously obtained from dynamically–unconstrained
two–box models. As long as the advective capability ξ is sufficiently large, dynam-
ically constrained MEP solutions are identical to dynamically unconstrained MEP
solutions. Consequently, the addition of a dynamical constraint does not alter the
previously obtained MEP results for Earth, Mars and Titan, and an analogous re-
sult is presented here for Venus. The rate of entropy production in an MEP state
is shown to be independent of rotation rate if the advective capability ξ is suffi-
ciently large (as for the four examples in the solar system), or if the rotation rate ω
is sufficiently small. The model indicates, however, that the dynamical constraint
does influence the MEP state when ξ is small, which might be the case for some ex-
trasolar planets. Finally, results from the model developed here are compared with
previous numerical simulations in which the effect of varying surface drag coefficient
on entropy production was calculated.
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1. Introduction

Atmospheric circulation on a planetary scale can be regarded as a heat engine.
Motion driven by the equator–to–pole gradient in absorbed radiation at the surface
is resisted by frictional forces. Momentum exchange at the surface (via boundary
layer turbulence) plays a dominant role in resisting motion (Kleidon et al., 2006).
Equilibrium is reached when the driving force equals the frictional force, and when
the radiative energy flux and the energy flux by atmospheric circulation are in
balance. It follows that the atmospheric heat engine produces entropy by driving a
poleward atmospheric heat flux down a meridional gradient in temperature.

In ground-breaking papers Paltridge (1975, 1978) hypothesised that the climate
system organises itself such that the equator–to–pole heat flux produces entropy at
the maximum possible rate. Based on this hypothesis Paltridge was able to repro-
duce important features of the observed climate, including meridional temperature
gradients and the large-scale pattern of cloud cover (Paltridge, 1978). The suc-
cess of this approach led to a great deal of interest in the late 1970s and early
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1980s, but was also criticised for lacking a mechanism by which the MEP state was
achieved, and for producing meridional heat transports which were independent
of well–known contraints on atmospheric dynamics, such as the planetary rotation
rate (Rodgers, 1976).

There has been a recent resurgence in the application of MEP principles to the
climate system (Ozawa et al., 2003; Paltridge et al., 2007), for two main reasons.
Firstly, Lorenz et al. (2001) showed that the equator–to–pole temperature differ-
ences on Titan and Mars, as well as on Earth, can be reproduced by applying an
MEP selection principle to a simple two-box model. The power of this study lay
in part in the transparency of its underlying model, whereas the Paltridge mod-
els are more difficult to understand and contain additional important assumptions
about vertical heat transports that are not directly related to MEP (O’Brien and
Stephens, 1995). Secondly, Dewar (2003, 2005) provided a statistical explanation
for the emergence of MEP in a wide-range of non-equilibrium systems, thereby
removing one of the major concerns about the use of MEP principles in climate
modelling. However, criticisms about the lack of atmospheric dynamics in the mod-
els have remained (Goody, 2007).

How could the Lorenz et al. two-box model reproduce equator–to–pole temper-
ature gradients on Earth, Mars and Titan without reference to the atmospheric
parameters or rotation rates of these planets? In order to answer this question we
extend the two-box model to include a simple representation of atmospheric dy-
namics on a rotating planet. We consider the fundamental physical balances that
operate in equator–to–pole heat transport and investigate the effect that they have
when introduced as an extra constraint into Lorenz et al.’s two–box model. The
first aim of the present paper, therefore, is to understand why Lorenz et al. were
able to obtain their result while ignoring the dynamics completely.

The second aim of the present paper is to understand the relationship between
surface friction and atmospheric entropy production. Recently, Kleidon et al. (2006)
used a numerical climate model to investigate the influence of surface–atmosphere
coupling on the rate of entropy production in Earth’s atmosphere. In a series of
simulations, they varied the surface drag coefficients for heat and momentum and
noted the subsequent effect on entropy production. (Strictly, the difference between
their simulations lay in varying the von Kármán constant away from its true value
k = 0.41. If one’s sensibilities are offended by varying a constant, one can imagine
that they varied the roughness length z0 instead.) The numerical simulations led
Kleidon et al. to conclude that observed values of Earth’s drag coefficients corre-
spond to an MEP state.

The present paper inhabits a mid–point on the spectrum of model complexity
running from Lorenz et al.’s model (with no dynamics) to Kleidon et al.’s model
(with full numerical dynamics). In §2 simple atmospheric dynamics are added to
the two–box model of Lorenz et al. 2001 to give a dynamically–constrained two–box
model. In §3 this dynamically–constrained model is nondimensionalised and solved
analytically as a function of the governing dimensionless parameters. The nature
of this solution is examined in §4 and the model is applied to a range of planets in
§5. A summary and physical overview is presented in §6 and conclusions are drawn
in §7.
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2. A two–box model including dynamics

A dynamically–constrained two–box model for atmospheric heat transport can be
created as follows (North et al., 1981). Assuming for simplicity that the sun is
always in the equatorial plane (i.e. that the planet has zero obliquity), it suffices
by symmetry to consider a single planetary hemisphere (figure 1a). This is divided
into ‘polar’ and ‘equatorial’ regions of equal surface area πR2 by a boundary at
30◦ latitude (Lorenz et al. 2001). (Here R is the planetary radius. A list of symbols
and corresponding numerical values is given in table 2). The contrast in absorbed
solar radiation between the polar and equatorial regions induces an atmospheric
circulation which, for simplicity, is assumed here to be a single convective Hadley
cell (figure 1b) in which warm air ascends near the equator and cold air descends
near the pole. The Hadley cell induces a surface wind of speed U that blows from
pole to equator and a corresponding high–altitude wind that blows from equator
to pole (figure 1b). The surface wind is subject to Coriolis forces and so crosses the
boundary at 30◦ latitude on a bearing θ away from the meridian (See figure 1a for
the definition of θ).

Heat transport by the winds is assumed to act over an effective thickness H of
the atmosphere. Since the boundary between the regions has length 2πR cos 30◦ =√

3πR, it follows that the meridional heat flux from equator to pole flows through
a vertical plane of area

√
3πRH.

The absorbed solar flux at latitude φ is ((1 − a)S0/π) cos φ, where a is albedo
and S0 is the solar constant in J m−2 s−1. The band of latitudes from φ to φ + dφ
has area 2πR2 cos φdφ and so it follows from integration of the absorbed flux that
the mean fluxes received by the surface in the polar and equatorial regions are

Fp =
(1− a)S0(1− γ)

4
, Fe =

(1− a)S0(1 + γ)
4

(2.1)

where γ = (3
√

3 − π)/(3π) ≈ 0.218 is a geometric constant. The difference in
absorbed flux leads to distinct surface temperatures Tp and Te in the polar and
equatorial regions (figure 1b). The upward radiative fluxes from the two regions
are then εσT 4

p and εσT 4
e where σ is the Stefan–Boltzmann constant and ε is a

dimensionless factor depending on the infrared optical depth of the atmosphere
and represents greenhouse effects (Lorenz et al. 2001). (In this paper, the value
ε = 0.5 is assumed to be reasonable for Earth–like planets, with ε = 0.01 chosen for
Venus because of the strong greenhouse effect there). For simplicity the radiative
fluxes can be linearised (Budyko 1969; Lorenz et al. 2001) as follows

εσT 4 ≈ A + BT (2.2)

In both the polar and equatorial regions, the surface is coupled by boundary layer
turbulence to a corresponding region of the atmosphere. Atmospheric temperatures
in the two regions are then assumed to be Tp + Tsa and Te− Tsa (model symmetry
ensuring that the surface–to–atmosphere temperature difference has magnitude Tsa

in both regions).
Energy conservation at the surface in the two regions (figure 1b) implies that

Fp + Fa = A + BTp, Fe − Fa = A + BTe (2.3)
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where Fa is the atmospheric flux in W m−2. (Note that the total flow rate in the
atmosphere is πR2Fa although meridional transport acts through an area

√
3πRH.

In this paper, all fluxes are expressed per unit surface area.) From equation 2.1,
equator–to–pole differences in surface temperature and absorbed solar flux (with
subscript ep) can be defined as:

Tep = Te − Tp, Fep = Fe − Fp =
(1− a)S0γ

2
(2.4)

For later use, a reference temperature T0 (representing the typical surface tem-
perature in the absence of atmospheric flow) is defined as the solution of

εσT 4
0 =

Fe + Fp

2
=

Fep

2γ
(2.5)

It follows that the linearisation parameters in equation 2.2 are:

A = −3εσT 4
0 , B = 4εσT 3

0 (2.6)

and that the surface temperatures satisfy

Te = T0 +
1
2
Tep, Tp = T0 − 1

2
Tep (2.7)

Equations 2.3 and 2.4 can be combined to give an expression for energy conserva-
tion:

Fep = BTep + 2Fa (2.8)

The surface–to–atmosphere energy fluxes in each region are of opposite sign, with
each being equal in magnitude to the lateral flux between regions (figure 1b). Fol-
lowing (Kleidon et al. 2006) it is assumed that the surface–to-atmosphere flux is
proportional to windspeed and surface–to–atmosphere temperature difference. The
equation for surface–to–atmosphere flux is therefore

Fa = CDρcUTsa (2.9)

where CD is a dimensionless drag co–efficient quantifying the strength of the cou-
pling between the atmosphere and the surface, ρ is the density of the atmosphere
and c is its specific heat capacity. (In the notation of Kleidon et al. [2006], this drag
co-efficient would be written CD = f(Ri, z/z0)k2/(log(z/z0))2), where k is the von
Kármán constant, z0 is the roughness length and z represents the height at which
the windspeed is U . f is an empirical function dependent on the stability of the
atmosphere as quantified by the Richardson number Ri.)

The surface wind (with meridional component U cos θ) blows from pole to
equator while the high–altitude wind blows from equator to pole. The net ef-
fect of this circulation is that energy is advected from equator to pole across
the boundary at 30◦ latitude. Overall, therefore, a meridional volumetric flow
rate U cos θ × √

3πRH carries energy across an atmospheric temperature differ-
ence (Te−Tsa)− (Tp +Tsa) = Tep− 2Tsa (figure 1b). Equating the area–integrated
fluxes for surface–to–atmosphere and equator–to–pole exchange it follows that

πR2Fa =
√

3πRHρcU cos θ(Tep − 2Tsa) (2.10)
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Figure 1. Overview of the dynamically–constrained two–box model. (a) Polar and equa-
torial regions in a planetary hemisphere, each of surface area πR2, and separated by a
boundary at 30◦ latitude. A surface wind of speed U blows from pole to equator on a bear-
ing θ through an effective thickness H of the atmosphere. The circulation is completed
by a compensating high–altitude wind from equator to pole. (b) Schematic representation
of the model. Dashed arrows – radiative energy fluxes, solid arrows – atmospheric energy
fluxes, dotted arrows – atmospheric circulation in a single Hadley cell.

To complete the model, it remains to specify how the windspeed U depends
on the equator–to–pole difference in air temperature. Assuming that energy and
momentum have the same effective drag coefficient, reasonable dynamics can be
constructed by considering the force balance in the meridional and zonal direc-
tions. The atmosphere in each region is assumed for simplicity to be isothermal,
with a temperature difference Tep− 2Tsa between the two regions. It will be shown
later that Tep ¿ T0 and so the atmospheric temperature is everywhere close to the
reference tempearture T0. It is therefore reasonable to approximate the thermal ex-
pansivity of the atmosphere by 1/T0, the value for an ideal gas at temperature T0.
It follows that a hydrostatic pressure difference of order (Tep − 2Tsa)gH/T0 exists
between the two regions and acts over a cross-sectional area of order

√
3πRH. The

resultant meridional force of order
√

3πRH(Tep − 2Tsa)gH/T0 tends to drive an
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atmospheric flow. It is resisted by a quadratic drag force of order πR2CDU2 acting
parallel to the surface wind and a Coriolis force of order πR2HΩU acting perpendic-
ular to the surface wind. (The Coriolis parameter at 30◦ latitude is 2Ω sin 30◦ = Ω.)
It follows that the balance between density driven pressure gradient and quadratic
drag – in the presence of a Coriolis force – is expressed by the equations:

πR2CDU2 cos θ = −πR2HΩU sin θ +
√

3πRH(Tep − 2Tsa)gH/T0 (2.11a)

πR2CDU2 sin θ = πR2HΩU cos θ (2.11b)

The drag coefficient CD can be regarded as a parameter controlling the degree of
geostrophy in the system, with the limit CD → 0 corresponding to pure geostrophic
balance.

Equations 2.8 to 2.11 constitute a complete description of the model system.
The rate of entropy production for the whole planet (in W K−1) is

Σ̇ = 4πR2Fa

(
1
Tp
− 1

Te

)
=

4πR2FaTep

TeTp
(2.12)

The overall aim of this paper is to examine the influence of the drag coefficient
CD and the rotation rate Ω on the rate of entropy production Σ̇. To achieve a deeper
understanding of this model, it will be nondimensionalised and solved analytically
in §3.

3. Analysis and nondimensionalisation

Dimensional analysis shows that the system is governed by the following three
dimensionless parameters

ξ =
√

12γ

[
ρc

√
gH3

BR

]
, ω =

1√
12γ

[
ΩR√
gH

]
, η =

√
3

[
H

R

]
(3.1)

Here and subsequently quantities in square brackets represent natural nondimen-
sionalisations while the preceding quantities are numerical factors of order unity
introduced for convenience.

The advection parameter ξ can be interpreted as a measure of the atmosphere’s
ability to transport heat from equator to pole by advection. The meridional wind
is at most of order

√
gH and so the maximum advective flux from equator to pole

is of order ρcH
√

gHTep/R. Normalising with respect to the equator–to–pole differ-
ence in outgoing flux BTep yields the advection parameter ξ up to a multiplicative
constant. For example, a planet with strong surface gravity and large atmospheric
heat capacity can sustain a large density–driven meridional heat flux and would
have a correspondingly large advection parameter ξ.

The rotation parameter ω can be interpreted as a measure of planetary rotation
rate. Specifically it is (up to a multiplicative constant) the ratio of the equatorial
rotation velocity ΩR to the gravitational velocity scale

√
gH. This ratio can also

be interpreted as the ratio of a Froude number Fr = U/
√

gH to a Rossby number
Ro = U/ΩR.

The thickness parameter η is a measure of atmospheric thickness as a fraction
of planetary radius. It is shown below that η does not appear in the dimensionless
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governing equations under an appropriate rescaling of the drag coefficient CD. It
follows that all aspects of the solutions (other than the numerical values of CD) are
independent of η. For this reason the ω–ξ plane will be treated as the parameter
space for this model, and the qualitative nature of the solution for any planet will
be shown to depend solely on its rotation parameter ω and advection parameter ξ.

To derive the dimensionless governing equation, a rescaled drag coefficient cd,
rescaled rotation parameter ζ and wind angle tangent τ are defined by

cd =
1
4η

CD, ζ = ω +
√

1 + ω2, τ = tan θ (3.2)

and dimensionless model variables (denoted by lower case letters) are defined by

fa = 2
[

Fa

Fep

]
, u =

2ζ√
γ

[
U√
gH

]
, tj =

[
BTj

Fep

]
(3.3)

where j ∈ {e, p, ep, sa, 0}. The letters in this set denote equatorial, polar, equator–
to–pole difference, surface–to–atmosphere difference and reference state respec-
tively.

The dimensional model of equations 2.8 to 2.11 can now be written in dimen-
sionless form as:

1 = tep + fa (3.4)

ζfa = 2ξcdutsa (3.5)

2
√

1 + τ2ζfa = ξu(tep − 2tsa) (3.6)

cdu
2 = −ωζτu +

1
2
ζ2

√
1 + τ2(tep − 2tsa) (3.7)

τcdu
2 = ωζu (3.8)

Equations 3.4 to 3.8 constitute a full description of the system, representing en-
ergy balance, surface–to–atmosphere heat flux, equator–to–pole energy transport,
meridional dynamics and zonal dynamics respectively.

The governing equations have one degree of freedom and so the solution for any
planet could in principle be calculated as a function of the advection parameter ξ,
rotation parameter ω and rescaled drag cd. In practice, however, it is simpler to
derive a parametric solution in which the tangent of the wind angle τ is used as
the independent variable and all other variables are calculated as functions of ξ, ω
and τ .

The system can be solved analytically by making the substitution X = f
−1/2
a

and noting from rearrangement of the governing equations that all model variables
can be written as functions of X and τ :

fa =
1

X2 , tep = 1− 1
X2 , u =

√
τ

ξω

ζ

X
, cd =

√
ξω3

τ3 X, tsa =
τ

2ξωX2 (3.9)

The governing equations then imply that X must satisfy the quadratic equation

X2 −
√

4ω(1 + τ2)
ξτ

X −
(

1 +
τ

ξω

)
= 0 (3.10)
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whose (positive) root is

X =

√
ω(1 + τ2)

ξτ

(
1 +

√
1 +

ξτ

ω(1 + τ2)
+

τ2

ω2(1 + τ2)

)
(3.11)

Equation 3.11 constitutes the required analytical solution of the system. In con-
junction with equation 3.9 it provides explicit parametric formulae for all variables
in the model as functions of the wind angle tangent τ = tan θ.

The final step in the formulation of the dimensionless system is to define a
dimensionless rate of entropy production σ̇ by suitable rescaling of its dimensional
equivalent Σ̇. A reasonable definition is the first equality in:

σ̇ = 4fatep =

(
1− t2ep

4t20

)[
2t20FepΣ̇
πR2B

]
(3.12)

where the second equality follows from equations 2.12, 3.3 and 3.13.
Rewriting equations 2.4 and 2.7 shows that the dimensionless surface tempera-

tures satisfy

te = t0 +
1
2
tep, tp = t0 − 1

2
tep, where t0 =

2
γ
≈ 9.17 (3.13)

It follows that tep < 1 ¿ 2t0 (equivalently Tep ¿ T0) and so the factor 1− t2ep/4t20
in equation 3.12 may be regarded for practical purposes as being equal to one.
Thus the dimensionless rate of entropy production σ̇ is, to a good approximation,
simply proportional to its dimensional equivalent Σ̇. Under this approximation the
maximisation of σ̇ is equivalent to the maximisation of Σ̇.

4. Solutions of the model

The objective now is to consider how solutions of the dimensionless system (§3)
vary as functions of the drag coefficient CD. Particular interest will centre on the
values of CD for which either the entropy production σ̇ or the atmospheric flux fa

is maximised. The variables in the model are divided into two classes - dynamical
variables and thermal variables. The dynamical variables windspeed u and wind
angle θ (from which meridional wind u cos θ and zonal wind u sin θ can be derived)
relate to motion in the atmosphere. The thermal variables, on the other hand,
relate to the poleward transfer of energy and are: the atmospheric energy flux fa,
the equator–to–pole surface difference in surface temperature tep, the surface–to–
atmosphere temperature difference tsa and the overall rate of entropy production
σ̇. Each of these variables can be calculated as a function of the drag coefficient
CD.

Three distinct maximisation procedures are relevant to this problem. They are
denoted by the letters MEP (maximum entropy production), LEB (Lorenz Energy
Balance) and MAF (maximum atmospheric flux) and are summarised in table 1.

(a) MEP – maximum entropy production solutions

In the context of this paper, an MEP solution is defined to be one in which the
rate of entropy production σ̇ is maximised subject to both the energy constraint
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Name Quantity Constraints Explicit

maximised applied solution

MEP σ̇ energy and dynamics –

LEB σ̇ energy only fa = tep = 1
2
, σ̇ = 1

MAF fa energy and dynamics –

Table 1. Three distinct maximisation principles – ‘maximum entropy production’ (MEP),
‘Lorenz Energy Balance’ (LEB) and ‘maximum atmospheric flux’ (MAF). The energy
constraint is given by equation 3.4 while the dynamical constraints are given by equations
3.5 to 3.8. The MEP solution is equal to an LEB solution if an LEB solution exists. and
is equal to the MAF solution if no LEB solution exists.

of equation 3.4 and the dynamical constraints of equations 3.5 to 3.8. In other
words, an MEP solution is obtained by imposing all of the constraints in the model
developed in §3.

(b) LEB – Lorenz energy balance solutions

In contrast to an MEP solution, an LEB solution is defined to be one in which
the rate of entropy production σ̇ is maximised subject to the energy constraint of
equation 3.4 only. It follows immediately that an LEB solution is a solution for
which fa = tep = 1

2 and hence σ̇ = 1. Maximising σ̇ subject only to equation 3.4
is equivalent to the procedure adopted in the dynamically–unconstrained model of
Lorenz et al. (2001). In the framework of the present model, an LEB solution is
found by setting X =

√
2 in equation 3.10 to give

LEB solution : 1− τ

ξω
=

√
8ω(1 + τ2)

ξτ
(4.1)

For a given planet (i.e. for given parameters ξ and ω), the wind angle tangent τ
in an LEB solution is found numerically by solving equation 4.1 and the remaining
model variables are calculated from equations 3.9 and 3.11. In general, equation 4.1
may have zero, one or two solutions τ depending on whether ξ is less than, equal
to, or greater than a critical value ξc(ω) (which will be derived below in equation
4.5). In physical terms the difference between these regimes relates to whether the
atmosphere is dynamically capable of sustaining the entropy production σ̇ = 1
which is necessary for there to be an LEB solution. It is important to stress that
an atmosphere with excess advective capability (ξ À ξc) can achieve the required
(maximal) entropy production σ̇ = 1 in two separate ways: either with a fast quasi–
zonal flow (u ≈ 1, θ ≈ 90◦) when the drag coefficient is small or with a slow
quasi–meridional flow (u ¿ 1, θ ≈ 0◦) when the drag coefficient is large.

The region of ω–ξ parameter space in which LEB solutions exist is calculated
below and is illustrated in figure 2.

(c) MAF – maximum atmospheric flux solutions

An MAF solution is defined to be one in which the atmospheric flux fa = 1/X2 is
maximised subject to both the energy constraint of equation 3.4 and the dynamical
constraints of equations 3.5 to 3.8. Equation 3.11 shows that X → ∞ both as

Article submitted to Royal Society



10 T. E. Jupp & P.M. Cox

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

10−3 10−2 10−1 100 101 102 103

A
d
v
ec

ti
o
n

p
a
ra

m
et

er
,
ξ

Rotation parameter, ω

Solution regimes in ω-ξ parameter space

Critical line
Rotation line

Earth
Mars

Venus
Titan

P1

Figure 2. The critical line ξc(ω) (equation 4.5) and a set of planets (§5) plotted in parameter
space. Above the critical line two LEB solutions exist. Below the critical line no LEB
solutions exist. MAF solutions exist at all points in parameter space. MEP solutions are
identical to the LEB solutions above the critical line and identical to the MAF solution
below the critical line. The rotation line (ω = 1) separates planets with “high” rotation
rate from planets with “low” rotation rates.

τ → 0 and as τ → ∞, while X is finite for positive values of τ . Hence X must
have a minimum for some finite value of τ which corresponds to the MAF solution.
An explicit formula for the MAF solution can therefore be obtained by implicit
differentiation of equation 3.10 with respect to τ and then setting dX/dτ = 0. It
follows that

MAF solution : X =
τ2

1− τ2

√
1 + τ2

ξω3τ
(4.2)

In contrast to LEB solutions, exactly one MAF solution exists for all points in ω–ξ
parameter space. For given planetary parameters ξ and ω, the wind angle tangent
at an MAF solution is found numerically by equating 3.11 and 4.2 and solving for
τ .

(d) Solution regimes and the critical line

In the model of §3 an MEP solution is one that maximises the dimensionless
entropy production σ̇ = 4fa(1 − fa) (equations 3.4 and 3.12). It is clear that this
expression is maximised when fa = 1

2 , which corresponds to an LEB solution. In
other words, the MEP solution is equal to either one of the LEB solutions when
LEB solutions exists. It may be, however, that fa < 1

2 for all possible solutions. In
this case, the maximum value of σ̇ = 4fa(1− fa) is obtained when the atmospheric
flux fa is itself maximised. In other words, the MEP solution is equal to the MAF
solution if no LEB solutions exist.
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The region of ω–ξ parameter space in which LEB solutions exist is bounded
by a critical line (ωc, ξc) on which the MAF and LEB solutions coincide. An LEB
solution requires that X =

√
2 (as in equation 4.1). Setting X =

√
2 and then

eliminating ξ from equations 4.1 and 4.2 gives the following parametric solution for
the critical line

critical line : ω2
c =

τ2(1 + τ2)
2(1− τ2)(3 + τ2)

, ξ2
c =

2(3 + τ2)3

(1− τ2)(1 + τ2)
(4.3)

The expression for ωc can be rewritten as a quadratic equation in τ2, which can
then be solved to show that, for points on the critical line:

τ2 =
s(ω)− 1− 4ω2

2 + 4ω2 ; where s(ω) =
√

1 + 32ω2 + 64ω4 (4.4)

Equations 4.3 and 4.4 can then be combined to give an explicit formula for the
critical line in ω–ξ parameter space:

ξc(ω) =

√√√√ 2
(
5 + 8ω2 + s(ω)

)3

(
2 + 4ω2

) (
3 + 8ω2 − s(ω)

)
(1 + s(ω))

(4.5)

Equation 4.5 can be used to diagnose the qualitative behaviour of an arbitrary
planet with rotation parameter ω and advection parameter ξ (figure 2).

When ξ > ξc(ω) the planet has sufficient advective capability to achieve the two
LEB solutions. It follows that the planet has two MEP solutions and that these are
equal to the two LEB solutions. On the other hand, when ξ < ξc(ω) the planet is
prevented from achieving the LEB solutions by the dynamical constraints. It follows
that there is only one MEP solution and that it is equal to the MAF solution.

It is helpful to consider approximate forms of equation 4.5 in the limits of
fast and slow rotation (figure 2). In the limit of fast rotation ω → ∞, s(ω) →
2 + 8ω2 and so ξc → 16ω. For a rapidly rotating planet, therefore, LEB solutions
are unobtainable if ξ < 16ω. In the limit of slow rotation ω → 0, s(ω) → 1 and
so ξc →

√
54. For a slowly rotating planet, therefore, LEB solutions are forbidden

if ξ <
√

54. It makes sense physically that the impact of the dynamical constraint
should depend on rotation rate in the limit of fast rotation but become independent
of rotation rate in the limit of slow rotation.

5. Application to a range of planets

In this section, solutions to the model of §3 are presented using parameter values for
a range of planets (figures 3 to 7). Since the model is concerned with surface drag it
is appropriate to apply it to rocky bodies with an atmosphere but not to gas planets.
Accordingly, Earth, Mars, Titan and Venus will be used as case studies within the
solar system. Plausible parameter values for these planets are given in table 2. It
turns out that all four of these planets inhabit the same quadrant of ω–ξ parameter
space and so exhibit qualitatively the same behaviour within the framework of this
model. A qualitatively different solution is presented using parameter values for the
fictitious planet P2.
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Symbol Earth Titan Mars Venus Units

a 0.3 0.21 0.15 0.65 –

g 9.81 1.35 3.69 8.87 m s−2

R 6.3× 106 2.6× 106 3.4× 106 6.1× 106 m

S0 1340 14.73 577 2561 W m−2

Ω 7.27× 10−5 4.56× 10−6 7.09× 10−5 2.99× 10−7 s−1

Fep 102.2 1.268 53.5 97.7 W m−2

T0 301.6 100.7 256.4 792.9 K

ε 0.5 0.5 0.5 0.001 –

A −703.5 −8.728 −367.838 −672.263 W m−2

B 3.11 0.116 1.912 1.130 W m−2 K−1

H 7981 18641 15913 23233 m

ρc 1262 5705 13.3 4.37× 104 J m−3 K−1

ξ 232.7 90774 12.789 108079 –

η 2.19× 10−3 0.0124 8.11× 10−3 6.60× 10−3 –

ω 1.01 0.046 0.615 0.002 –

ζ 2.44 1.05 1.79 1.002 –

Table 2. List of parameters in the model, with approximate numerical values for Earth,
Mars, Titan and Venus. Numerical values for albedo a, gravity g, radius R, solar constant
S0 and rotation rate Ω were obtained from online databases. Other parameters were derived
as follows: Fep from equation 2.4, ε chosen to make T0 from equation 2.5 agree with online
data, A and B from equation 2.6. Estimates of surface pressure p0 and surface density ρ0

were also obtained from online databases, allowing the scale height to be estimated from the
formula for an isothermal atmosphere H = p0/gρ0. Volumetric heat capacity was estimated
from the formula for a diatomic ideal gas ρc = 7p0/2T0. The dimensionless parameters ξ,
η, ω and ζ were calculated using equations 3.1 and 3.2.

Model solutions for the Earth are shown in figure 3. The dependence of the
dynamical variables on drag coefficient is shown in figure 3a. When the drag coef-
ficient is very small, the wind speed u is high but the wind angle θ is close to 90◦

and so the wind blows predominantly in the zonal direction. A zonal wind does
not carry an equator–to–pole heat flux. As the drag coefficient increases, the wind
speed and the wind angle both decrease. The net result is that the meridional wind
u cos θ – which carries the poleward heat flux – attains a maximum value for drag
coefficient CD ≈ 0.2 before falling away for higher values of the surface drag. The
dependence of the dynamical variables on drag coefficient is shown in figure 3b. The
effect of the maximised meridional wind when CD ≈ 0.2 is reflected in a nearby
maximum in the atmospheric heat flux fa (and hence, from equation 3.4, a mini-
mum in the equator–to–pole difference in surface temperature tep). It follows that
CD ≈ 0.2 constitutes the MAF solution for the Earth. Figure 3b shows that this
MAF solution corresponds to a local minimum in the rate of entropy production σ̇.
There are however two maxima in entropy production which occur for CD ≈ 0.002
and CD ≈ 30. These are by definition the MEP solutions. The Earth lies above
the critical line in ω–ξ parameter space (figure 2). It follows that the two MEP
solutions coincide with the LEB solutions for which, by definition, fa = tep = 1/2
and σ̇ = 1.

These results can now be compared with the numerical results of Kleidon et
al. 2006. They obtained an MEP solution for the (true) value of the von Kármán

Article submitted to Royal Society



MEP two–box climate model with dynamics 13

0

0.2

0.4

0.6

0.8

1

10−4 10−2 100 102 104 106 108

0

10

20

30

40

50

60

70

80

90

u
,
u

co
s
θ
,
u

si
n

θ

θ
(◦

)

Drag coefficient, CD

Earth (ξ = 2.33 · 102, ω = 1.01 · 100, η = 2.19 · 10−3)(a)

windspeed: u
meridional wind: u cos θ

zonal wind: u sin θ
angle: θ

0

0.2

0.4

0.6

0.8

1

10−4 10−2 100 102 104 106 108

σ̇
,
f

a
,
t e

p
,
2ζ

2
t s

a

Drag coefficient, CD

Earth (ξ = 2.33 · 102, ω = 1.01 · 100, η = 2.19 · 10−3)(b)

σ̇
fa

tep
2ζ2tsa

Figure 3. Model solutions as a function of drag coefficient CD for Earth. Dynamical vari-
ables are shown in (a) and thermal variables are shown in (b). There are two LEB solutions
for which fa = tep = 1

2
and hence σ̇ = 1. There is one MAF solution for which fa is max-

imised. The surface–to–atmosphere temperature difference tsa can be shown analytically
to attain a maximum value 1/2ζ2. For clarity, therefore, the rescaled quantity 2ζ2tsa is
plotted rather than tsa.

constant k ≈ 0.4, which should correspond to a drag coefficient CD of order 0.1. The
present model, in contrast, produces MEP solutions for drag coefficients CD ≈ 0.002
and CD ≈ 30 which differ by several orders of magnitude from Kleidon et al.’s value.
Whilst the MEP results do not coincide, it is intriguing that the present model
does yield a MAF solution for a drag coefficient CD ≈ 0.2 that is comparable with
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Figure 4. As figure 3, but for Mars. Like Earth, Mars inhabits the top–left quadrant in
parameter space (figure 2)

Kleidon et al.’s MEP solution. Clearly, the differences must arise because the present
model contains substantially less physics than a full atmospheric simulation.

In comparison with the dynamically–unconstrained model of Lorenz et al. 2001,
the solutions for Earth in figure 3 offer an explanation for why the dynamics did not
seem to matter when Lorenz et al. obtained an MEP solution within the framework
of their model. The Earth has an atmosphere which is dynamically capable of
sustaining a flux fa = 1

2 and so the addition of dynamics to Lorenz et al.’s two–
box model does introduce any constraints which prevent this LEB solution being
attained.
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Figure 5. As figure 3, but for Titan. Like Earth, Titan inhabits the top–left quadrant in
parameter space (figure 2)

To continue the comparison with Lorenz et al. 2001, model solutions for Mars
and Titan are shown in figures 4 and 5, and the present model is also applied to
Venus in figure 6. The analysis of §3 suggests that qualitatively the same behaviour
would be expected for these planets as was obtained for the Earth because they
inhabit the same quadrant of parameter space (figure 2). This is indeed the case.
All three non–terrestrial planets have a MAF solution for CD ∼ 0.1 at which the
meridional wind and atmospheric flux are maximised. This is not the MEP solution
however, because LEB solutions exist. As for the Earth, the two MEP solutions
coincide with the two LEB solutions at which fa = 1

2 . Mars lies very close to the
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Figure 6. As figure 3, but for Venus. Like Earth, Venus inhabits the top–left quadrant in
parameter space (figure 2)

critical line in figure 2, and so the MAF and LEB solutions almost coincide in figure
4.

The behaviour of solutions below the critical line can be illustrated by consider-
ing a fictitious planet P1 with appropriate parameter values. One might speculate
that there is, somewhere, an extrasolar planets having these parameter values. Since
P1 (figure 7) lies below the critical line in figure 2 its atmosphere is dynamically
incapable of sustaining the LEB atmospheric flux fa = 1

2 . The MEP solution is
therefore given by an MAF solution in which fa is maximised.

The behaviour of planets with high rotation rate (not illustrated here) is qual-
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Figure 7. As figure 3, but for the fictional planet P1. P1 inhabits the bottom–left
quadrant in parameter space (figure 2)

itatively similar to those with low rotation rate, except that the MAF and LEB
solutions occur at higher values of the drag coefficient CD. This follows (equations
3.2, 4.2 and 3.9) from the fact that the drag coefficient at a MAF solution is

MAF solution : CD = 4η

√
1 + τ2

(1− τ2)2
(5.1)

and that the wind angle tangent τ at a MAF solution is a function of rotation rate.
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Figure 8. Contours of the rate of entropy production at MEP: σ̇MEP . Above the critical
line (equation 4.5), the MEP state is an LEB state and so σ̇MEP = 1. Below the critical
line, the MEP state is an MAF state and contours of σ̇MEP are calculated numerically.
The rate of entropy production in an MEP state is independent of rotation rate for all
slowly rotating planets (ω ¿ 1), and for all planets with sufficient advective capability
(i.e. those above the critical line).

6. Summary and physical interpretation

A simple energy balance model has been constructed to explore the underlying
physics behind entropy production by equator–to–pole heat flux in planetary at-
mospheres. Analysis of the present model gives insight into previous results from
both a model containing less physics (Lorenz et al. 2001) and a model containing
more physics (Kleidon et al. 2006). The dimensionless form of the present model
allows it to be applied easily to arbitrary planets.

It should be stressed that the model is very simple and that the approximations
involved in its construction become harder to justify for extreme parameter values.
For example, the number of convection cells per hemisphere (assumed here to be
one) is likely to increase with rotation rate, and drag coefficients many orders of
magnitude different from unity (as in figures 3 to 7) are difficult to contemplate.
Nonetheless, the model contains sufficient physics to yield qualitative conceptual
insight.

It is clear that the low friction limit CD → 0 decouples the atmosphere and the
surface. In this case surface temperatures in the equatorial and polar regions take
their radiative equilibrium values, and atmospheric temperature is uniform across
latitudes. This means that there is no drive for meridional atmospheric transport,
and the wind is strong but predominantly zonal. The rate of entropy production is
therefore zero.

On the other hand, the high friction limit CD → ∞ couples the atmosphere
and the surface so tightly that atmospheric temperatures are equal to surface tem-
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Figure 9. Dynamical constraints expressed in terms of a dimensionless ‘coefficient of merid-
ional diffusion’ d = (1 − tep)/tep in the spirit of Lorenz et al. 2001. The effect of the
dynamical constraints introduced in the present paper is to introduce a threshold value of
d which cannot be exceeded. (The level of the threshold depends on the planetary param-
eters ω and ξ. In this illustration the threshold is 20.) Planets above the critical line in
figure 2 have thresholds greater than 1, allowing the LEB solution σ̇ = 1 to be obtained.
Planets below the critical line in figure 2 have thresholds less than 1, meaning that the
LEB solution σ̇ = 1 cannot be obtained.

peratures (Tsa → 0), which again take their radiative equilibrium values. In this
case the drive for meridional transport is large, but high surface friction prevents
significant flow from taking place. The rate of entropy production is therefore close
to zero.

It follows that between these two extremes there must exist at least one inter-
mediate value of CD for which the entropy production is maximised. For planets
with a sufficiently large advection parameter ξ, there are two values of the drag
coefficient for which the entropy production is maximised (LEB solutions), and one
intermediate value of the drag coefficient for which the atmospheric flux is max-
imised (the MAF solution). On the other hand, for planets with a small advection
parameter, the value of the drag coefficient for which the atmospheric flux is max-
imised is also the single value for which the entropy production is maximised (the
MAF solution).

The rate of entropy production σ̇MEP for a planet in an MEP state is shown
in ω–ξ parameter space in figure 8. Above the critical line, σ̇MEP = 1 and hence
is independent of rotation rate. Below the critical line, σ̇MEP is independent of
rotation rate only for a slowly rotating planet ω ¿ 1, exactly as one would expect
on physical grounds.

Finally, the influence of the dynamical constraints on entropy production can
be interpreted in terms of the ‘coefficient of meridional diffusion’ D = Fa/Tep used
by Lorenz et al. as the free parameter in their model. In terms of the present model
D = (B/4)(1− tep)/tep, and so it is reasonable to define a dimensionless coefficient
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of meridional diffusion d = (1− tep)/tep. It follows from the governing equations of
§3 that the dimensionless dynamical variables can be written as functions of d:

σ̇ = 4d/(1 + d)2, fa = d/(1 + d), tep = 1/(1 + d) (6.1)

These relationships are plotted in figure 9. The effect of the dynamical constraints
in the model of §3 is to prevent large values of d from being realised. It follows
that an LEB solution σ̇ = 1 is possible only if d = 1 is permitted by the dynamical
constraints.

7. Conclusions

We have extended the traditional two–box model of latitudinal heat transport to
include a simple representation of atmospheric dynamics on a rotating planet. The
revised model reproduces the previous unconstrained MEP state when the advec-
tive capability of the atmosphere is sufficiently large and the planetary rotation rate
is sufficiently small. By chance, this is the regime that describes the rocky planets
in the solar system (Earth, Mars, Venus and Saturn’s moon - Titan), and we be-
lieve that this is why the unconstrained MEP solution can reproduce the observed
equator–to–pole temperature gradient, despite the absence of atmospheric dynam-
ics in the model (Lorenz et al. 2001). It is possible that exoplanets will be discovered
in which the advective capacity and rotation rate provide meaningful constraints
on the MEP state. In these cases we predict a divergence of the observed planetary
climates from the unconstrained MEP state, as outlined in the theory developed in
this paper.
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