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Abstract.
Evidence of non-uniformity in the rate of seismicity and volcanicity has been sought

on a variety of timescales ranging from 12 hours (tidal) to 103 − 104 years (climatic),
but the results are mixed. Here, we propose a simple conceptual model for the influence
of periodic processes on the frequency of geophysical ‘failure events’ such as earthquakes
and volcanic eruptions. In our model a failure event occurs at a ‘failure time’ tF = tI+
tR which is controlled by an ‘initiation event’ at the ‘initiation time’ tI and by the ‘re-
sponse time’ of the system tR. We treat each of the initiation time, the response time
and the failure time as random variables. In physical terms, we define the initiation time
to be the time at which a ‘load function’ exceeds a ‘strength function’ and we imagine
that the ‘response time’ tR corresponds to a physical process such as crack propagation
or the movement of magma.

Assuming that the magnitude and frequency of the periodic process are known, we
calculate the statistical distribution of the initiation times on the assumption that the
load and strength functions are otherwise linear in time. This allows the distribution of
the failure times to be calculated, if the distribution of the response times is known also.

The predictions of this simple theory are compared with some examples of observed
periodicity in seismic and volcanic activity at tidal and annual timescales.

1. Introduction

It has been suggested that time-periodic processes over a
wide range of timescales may be responsible for the modula-
tion of seismicity and volcanic activity. On a daily timescale,
oceanic and earth tides have been been considered as possi-
ble triggers of seismicity [e.g. Wilcock, 2001; Vidale et al.,
1998] and volcanicity [e.g. Johnston and Mauk, 1972; Mauk
and Johnston, 1973; Dzurisin, 1984]. Daily variations in
temperature and atmospheric pressure have also been sug-
gested as modulators of volcanic activity [e.g. Mastin, 1994;
Neuberg, 2000]. On an annual timescale, barometric pres-
sure [Gao et al., 2000] and loading by snow [Heki, 2001] have
been investigated along with annual changes in sea level [e.g.
Mason et al., 2002; McNutt and Beavan, 1987]. Finally, on a
timescale of thousands of years, climatic changes in sea level
and ice loading have been proposed as possible modulators
of historical volcanic activity [e.g. Jull and McKenzie, 1996;
McGuire et al., 1997; Glazner et al., 1999].

Our aim in this paper is to derive a simple statistical
model of the times at which ‘failure events’ (such as earth-
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quakes and volcanic eruptions) occur under the influence of
a periodic process whose magnitude and period are known.
We use an intuitively reasonable model for ‘failure events’ in
which the failure process begins when a ‘load function’ first
exceeds a ‘strength function’ as shown in Figure 1 [Lockner
and Beeler, 1999].

Having derived the statistical distribution of the failure
times we then discuss how this model might be applied to
geophysical data. In particular, we discuss the contrast-
ing evidence for non-uniformity in the global volcanic erup-
tion rate at the annual timescale and at the tidal timescale.
It appears that the volcanic eruption rate displays non-
uniformity of up to 18% on an annual timescale but no sig-
nificant periodicity has been found at the tidal timescale (12
hours) [Mason et al., 2002].

2. Outline of model

Our conceptual model is one in which an initiation event
at time tI marks the beginning of a failure process (such as
crack propagation or the movement of magma) which causes
a failure event (such as an earthquake or a volcanic eruption)
to occur at a subsequent time tF (Figure 1). The duration of
the failure process is labelled the response time tR and so the
failure time is simply the sum of the initiation and response
times: tF = tI + tR. We suppose that an initiation event
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occurs when a ‘load’ function xL(t) first exceeds a ‘strength’
function xS(t). It follows that the ‘initiation time’ tI is the
smallest value of t for which xL(t) = xS(t). For example, the
load function might represent the pressure of magma within
a magma chamber (Figure 1a) or the shear stress across a
geological fault (Figure 1b). Periodic variations in ‘load’ can
therefore arise if periodic loading of the crust affects vari-
ables such as magma pressure or shear stress. Similarly, peri-
odic variations in ‘strength’ can occur if faults are ‘clamped’
or ‘unclamped’ by changes in the normal stress across the
fault [Stein, 1999] (Figure 1b). We emphasise that the load
and strength functions xL(t) and xS(t) need not necessar-
ily have the dimensions of stress. They could equally well
represent strains or displacements. Our requirement is sim-
ply that the load and the strength have the same dimensions
and that an ‘initiation event’ should occur at the point when
the ‘load’ first exceeds the ‘strength’.

Our ultimate aim in this paper is to derive an expression
for the statistical distribution of the failure time tF = tI +tR
when an external ‘periodic process’ imposes time-periodic
variations on either the load or the strength. Our model is
therefore a quantitative extension of those described qual-
itatively by Vidale et al. (1998) and Lockner and Beeler
(1999). In this paper we seek to generalise these models by
including the concept of a stochastic response time and by
deriving analytical expressions for the statistical distribu-
tions of the initiation, response and failure times.

We suppose that the periodic process under consideration
imposes a single sinusoidal perturbation of known amplitude
A and known angular frequency ω on either the strength or
the load. There are many periodic processes, operating over
a wide range of timescales, which lead to perturbations of

Figure 1. A conceptual overview of the model. (a) In
the context of volcanic eruptions, we suppose that erup-
tions are initiated when the pressure of magma in a magma
chamber (represented by xL(t)) exceeds a critical ‘strength’
(represented by xS(t)); (b) In the context of earthquakes,
we suppose that movement on faults is initiated when the
shear stress on the fault (represented by xL(t)) exceeds the
Coulomb failure stress [Stein, 1999] (represented by xS(t))
which is related to the normal stress on the fault; (c) Vol-
canic and seismic events can both be viewed in terms of an
initiation event at the initiation time tI which occurs when
the ‘load function’ xL(t) first exceeds the ‘strength function’
xS(t). After a subsequent response time tR the system fails
at the ‘failure time’ tF = tI + tR.

this sort. Examples include earth and ocean tides, annual
changes in sea level and barometric pressure, and changes
in crustal loading from snow and ice. For simplicity we sup-
pose that in the absence of the periodic process the load and
the strength approach each other linearly with time (Figure
2). This assumption is valid provided that the load and
strength functions are approximately linear over the peri-
odic timescale 1/ω. (In section 3.1 below we consider qual-
itatively the consequences of relaxing this requirement.)

We consider two classes of situation (Figure 2), which are
mathematically equivalent. In the first case (Figure 2a), the
load increases linearly with time while the periodic process
imposes sinusoidal perturbations on an otherwise constant
‘failure strength’ x0, giving the simple model

model 1 :

{
xL(t) = m(t− tT )
xS(t) = x0 +A sinωt

(1)

where m is the linear rate of increase of the load and tT is a
time translation parameter controlling the time at which the
load is taken to be zero. With the convention that A > 0,

Figure 2. Sketches of the two types of process which are
considered to lead to an initiation event. The two models
are mathematically equivalent. (a) Model 1: The load in-
creases linearly at rate m while the periodic process causes
the strength to oscillate about a mean failure strength x0;
(b) Model 2: The strength is constant while the periodic
process causes the load to oscillate about a linearly increas-
ing trend of rate m.
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Table 1. Representative parameter values for various periodic processes.

Process Magnitude A (kPa) Frequency ω (rad.s−1) Rate Aω (Pa.s−1)

annual barometrica 1 2 · 10−7 2 · 10−4

semi-diurnal ocean tideb 10 1.45 · 10−4 1.45
annual sea levelc 1 2 · 10−7 2 · 10−4

climatic sea leveld 1000 2 · 10−11 2 · 10−5

a Adapted from Gao et al. (2000).
b Adapted from Wilcock (2001) assuming ocean tides of magnitude 1 m at the dominant tidal period 12.4 hours.
c Adapted from Mason et al. (2002) assuming an annual sealevel variation of 10 cm.
d Adapted from McGuire et al. (1997) assuming a sealevel change of 100 m in 10, 000 years.

the origin of the time axis in equation 1 has been chosen so
that the fluctuation in strength takes a maximum (positive)
value when ωt = π/2 (Figure 2a). Variation of the param-
eter tT corresponds to translation of the load lines along
the time axis and so influences the time at which the load
and the strength intersect. In the context of earthquakes, a
representative value of the linear rate m is given by the ‘typ-
ical’ rate of increase of tectonic stress m ∼ 10−4 bar.hr−1

(or 2.8 · 10−3 Pa.s−1) quoted by Vidale et al. (1998). In
a volcanic context, measured rates of tectonic stress accu-
mulation m at individual volcanoes have been reported in
the range 2 · 10−2 Pa.s−1 to 80 Pa.s−1 [Mauk and John-
ston, 1973; Sparks 1981]. Similarly, ‘typical’ values of the
magnitude A and angular frequency ω of various periodic
processes are given in Table 1.

In the second case (Figure 2b), we suppose that the peri-
odic process affects the load rather than the strength. Phys-
ical examples of this situation include the changes in shear
stress across a geological fault [Perfettini and Schmittbuhl,
2001] (Figure 1b) and variations in the pressure of magma
within a magma chamber (Figure 1a). In this case the load
consists of sinusoidal perturbations about an upward linear
trend of rate m while the strength remains constant. This
gives the model

model 2 :

{
xL(t) = m(t− tT )−A sinωt
xS(t) = x0

(2)

which is analogous to equation 1. Assuming again that
A > 0, the origin of the time axis has been chosen in such a
way that the fluctuation in load takes a maximum (negative)
value when ωt = π/2 (Figure 2b).

In physical terms, model 1 and model 2 are equivalent
because a positive perturbation in strength (model 1) is pre-
cisely equivalent to a negative perturbation in load (model
2). Mathematically, the two models are equivalent because
in both cases the initiation time tI is the smallest solution
of the equation

x0 +A sinωtI = m(tI − tT ) (3)

For the remainder of this paper we shall derive results in
which the origin of the time axis is chosen so that equation
3 is valid and the periodic part of the strength is increasing
at t = 0. It is important to emphasise how this choice of
the time origin might be made in practice for a given pe-
riodic process. In general, the periodic process (e.g. the
ocean tide) is known as a function of time although it may
not be known a priori whether it affects the ‘load’ xL(t) or
the ‘strength’ xS(t). To choose an origin for the time axis
which is consistent with equation 3 it is therefore necessary
to make one of two assumptions: (1) the periodic process
affects the strength xS(t), or (2) the periodic process af-
fects the load xL(t). Since a positive perturbation in load is

equivalent to a negative perturbation in strength the differ-

ence between assumptions (1) and (2) is simply translation

in time by half a period π/ω. It follows that any predictions

made about the distribution of initiation times under as-

sumption (1) will differ from those made under assumption

(2) by half a period.

Figure 3. Sketches of the dimensionless model showing
how the range of the initiation times depends on the dimen-
sionless rate M . The load lines (for various values of the
dimensionless time translation parameter τT ) are shown as
thin lines and the strength curve is shown as a thick line.
Initiation events for each value of τT are indicated by open
circles. (a) If M ≥ 1 initiation events are possible at all
dimensionless times in the range [0, 2π]; (b) If M < 1, initi-
ation events are possible only at dimensionless times in the
limited range [τ1, τ2].



4 JUPP ET AL.: PERIODICITY OF VOLCANOES AND EARTHQUAKES

It is helpful to recast the model in dimensionless form by
defining the dimensionless quantities

ξ =
x− x0

A
, τ = ωt, τT = ω

(
tT +

x0

m

)
(4)

and a ‘dimensionless rate’

M =
m

Aω
(5)

The dimensionless rate M can be interpreted as the ratio of
the rate of change of the linear process m to the maximum
rate of change of the periodic process Aω. It follows from
equation 1 that the dimensionless governing equations are

models 1 & 2 :

{
ξL(τ) = M(τ − τT )
ξS(τ) = sin τ

(6)

and that the dimensionless initiation time τI = ωtI is the
smallest solution of the equation:

sin τI = M (τI − τT ) (7)

In geometrical terms, an initiation event occurs when the
linearly increasing dimensionless load ξL(τ) first exceeds the
dimensionless strength ξS(τ) (Figure 3). The initiation time
τI is therefore a function of the dimensionless rate M and
the time translation parameter τT . It seems reasonable to
assume that the physical processes controlling the periodic
oscillations in strength and the linear increase in load are
independent. It then follows that the problem is periodic
in time and has translational symmetry along the time axis.
We can therefore restrict attention to the dimensionless time
interval [0, 2π]. It is then reasonable to assume that the time
translation parameter τT is a random variable drawn from
a uniform distribution on the interval [0, 2π]. Similarly, the
dimensionless initiation time τI = ωtI mod 2π, the dimen-
sionless response time τR = ωtR mod 2π and the dimen-
sionless failure time τF = ωtF mod 2π can all be viewed as
radian angles in the range [0, 2π]. (We note, however, that
it may sometimes be easier to express these radian angles
in degrees so that they lie in the range [0◦, 360◦]). The sta-
tistical distributions of the dimensionless times τI , τR and
τF will be investigated using the terminology of directional
statistics [Mardia and Jupp, 2000].

Figure 3 shows that we expect two distinct regimes ac-
cording to the size of the dimensionless rate M . If M ≥ 1
(Figure 3a), the rate of increase of the load is sufficiently
large that all initiation times in the range [0, 2π] are possi-
ble. On the other hand, if M < 1 (Figure 3b) the rate of
increase of the load is sufficiently small that certain initia-
tion times become ‘masked’ by the curvature of the sine wave
and initiation events are restricted to occur over a smaller
interval.

3. The distribution of the initiation times

We show in detail in Appendix A how the model described
above can be used to derive the probability density function
(PDF) of the distribution of the initiation times as a func-
tion of the dimensionless rate M . We present a summary of
these results here. Firstly, we define the constant τM by

τM =

{
cos−1(M) if M ≤ 1

0 otherwise,
(8)

It can then be shown (equations A13, A15 and A14) that
the maximum initiation time τ2 (in [0, 2π]) is

τ2 = 2π − τM , (9)

and that the minimum initiation time τ1 is the solution (in
[0, 2π]) of the equation

sin τ1 −Mτ1 = − (sin τM −MτM ) . (10)

The PDF of the dimensionless initiation times (on the in-
terval [0, 2π]) is then:

fI(τ ;M) =

{
1
2π

(
1− cos τ

M

)
for τ1 ≤ τ ≤ τ2

0 otherwise.
(11)

If the dimensionless rate is large (M ≥ 1), then τ1 = 0,
τ2 = 2π and equation 11 reduces to the PDF of a distri-
bution known in directional statistics as the ‘cardioid dis-
tribution’ [Mardia and Jupp (2000), Section 3.5.5; Jeffreys
(1961), Section 5.94]. We therefore refer to the distribution
in equation 11 as a ‘pure cardioid distribution’ if M ≥ 1. On
the other hand, we are not aware of any previous reference
to a PDF of this form if M < 1. We therefore refer to the
distribution as an ‘extended cardioid distribution’ if M < 1.
The PDFs of pure and extended cardioid distributions are
shown in Figure 4 for various values of the dimensionless
rate M .

Figure 4a shows the minimum and maximum initiation
times τ1 and τ2 as functions of the dimensionless rate M .
If M ≥ 1, all initiation times in the range [0, 2π] are pos-
sible (Figure 3a). If M < 1, however, the initiation times
are constrained to occur in a range of dimensionless times
around 3π/2 (Figure 3b).

Statistical distributions on the interval [0, 2π] can be in-
terpreted as distributions of vectors lying on the unit circle
[Mardia and Jupp, 2000]. Consequently, the random vari-
ables τI , τR and τF which represent times in a periodic cycle
can be interpreted as points on a ‘clock face’. Given a sample
of times drawn from such a distribution it is intuitively rea-
sonable to characterise the sample by considering the mag-
nitude and direction of the sum of the vectors corresponding
to each of the observations in the sample. (We discuss this
sample statistic further in the context of equation 32). The
population equivalents of these sample statistics can be cal-
culated by considering the ‘first trigonometric moments’ of
the distribution:

C =

∫ 2π

0

cos(θ)f(θ)dθ, S =

∫ 2π

0

sin(θ)f(θ)dθ (12)

where f(θ) is the PDF of the distribution. The mean resul-
tant length ρ ∈ [0, 1] and mean direction µ ∈ [0, 2π] of the
distribution are then defined by the complex equation:

ρ exp(iµ) = C + iS, where i =
√
−1. (13)

The mean direction µ is a measure of the ‘average direc-
tion’ of a circular distribution. Figure 4a shows the mean
direction µI of the distribution of the initiation times (equa-
tion 11) as a function of the dimensionless rate M .

The mean resultant length ρ is a measure of the non-
uniformity of the distribution. For example, the circular
uniform distribution f(θ) ≡ 1/2π (for which all directions
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Figure 4. The properties of the PDF of the initiation times fI(τ ;M) as functions of the dimensionless
rate M . (a) The minimum initiation time τ1, the maximum initiation time τ2 and the mean initiation
time µI . Exact (analytical or numerical) results are shown in black. Where appropriate, the approximate
functional forms of equation 15 are shown in grey; (b) The mean resultant length of the distribution of
the initiation times ρI as a function of M . Exact solution in black, approximate solution of equation
15 in grey; (c) The PDF of the initiation times fI(τ ;M) for different values of M when M ≥ 1. The
periodic variations in load / strength are shown above for comparison ; (d) As part (c), but for M < 1.

are equally probable) has mean resultant length ρ = 0, while
the pure cardioid distribution of equation 11 (if M ≥ 1) has
mean resultant length 1/2M . Figure 4b shows the mean re-
sultant length ρI of the distribution of the initiation times as
a function of the dimensionless rate M . The mean resultant
length ρI tends to zero as M tends to infinity. This corre-
sponds to the limit in which the maximum rate Aω of the
periodic process is negligibly small compared with the rate
m of the linear process. Thus, for very large values of M the
distribution of the initiation times is approximately uniform
on [0, 2π]. On the other hand the mean resultant length ρI

tends to unity as M tends to zero. This corresponds to the
limit in which the maximum rate Aω of the periodic process
is much larger than the rate m of the linear process. In this
limit the periodic process has a very significant effect on the
distribution of the initiation times, which becomes highly
non-uniform.

Figures 4c,d show typical PDFs of the initiation times
fI(τ ;M). The PDFs for various values of M are shown,
along with graphs of the oscillations in the ‘strength’ fucn-
tion for comparison. The uniform PDF 1/2π corresponding
to the limit M → ∞ is shown as a dotted line. Physically,
this limit occurs when the periodic process has a negligible

influence on the initiation time and all initiation times be-
come equally probable. Figure 4c shows the PDFs if M ≥ 1.
In this case the PDF of the initiation times is a pure cardioid
so it is sinusoidal in shape and symmetric in time about
τ = π. In general, therefore, initiation events are ‘most
probable’ at dimensionless times τ ≈ π. This corresponds
to the time in the periodic cycle when the oscillatory part
of the strength is decreasing (model 1) or the oscillatory
part of the load is increasing (model 2). On the other hand,
initiation events are least probable at dimensionless times
τ ≈ 0 (or, equivalently, τ ≈ 2π). This corresponds to pe-
riods when the oscillatory part of the strength is increasing
(model 1) or the oscillatory part of the load is decreasing
(model 2).

Equations 12 and 13 can be used to calculate the mean
result length ρI and mean direction µI of the distribution
of the initiation times (equation 11):

τ1 = 0, τ2 = 2π

ρI = 1
2M

, µI = π

}
if M ≥ 1 (14)

For example, if M = 10 then equation 11 shows that the
distribution of the initiation times displays a ‘fractional
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non-uniformity’ 1/M = 0.1 while equation 14 shows that
the mean resultant length is precisely half of this value:
ρI = 1/2M = 0.05.

Figure 4d shows typical PDFs of the initiation times
fI(τ ;M) if M < 1. Some initiation times are impossible
(that is, they occur with probability zero) and the PDF is
asymmetric in time. As M → 0 the influence of the periodic
process increases and the ‘most probable’ time for initia-
tion events to occur moves from τ ≈ π to τ ≈ 3π/2. In
other words, as M → 0 initiation events are restricted to
occur within an ever-narrowing band of dimensionless times
around 3π/2. This represents the time in the periodic cy-
cle when the oscillatory part of the strength takes its most
negative value (model 1) or the oscillatory part of the load
takes its most positive value (model 2).

When M ≥ 1 the properties of the pure cardioid distribu-
tion listed in equation 14 can all be evaluated analytically.
This is not the case when M < 1 and the initiation times
are drawn from an extended cardioid distribution. The min-
imum initiation time τ1 must be evaluated numerically from
equation 10, and so the mean initiation time µI and the
mean resultant length ρI also require numerical evaluation.
Nonetheless it is possible to find functional forms which are
an approximate fit to the numerically derived results. By
using this method where necessary, we obtain the follow-
ing mixture of analytical and approximate results for the
extended cardioid distributions (when M < 1):

τ1 ≈ 3
2 cos−1 (2M − 1)

τ2 = 2π − cos−1(M)

ρI ≈
√

1− 3M
4

µI ≈ π
2

[
3−

√
M + 1

2M(M − 1)
]


if M < 1 (15)

Figures 4a,b suggest that the errors introduced by using the
approximate functional forms in equation 15 are small. Nu-
merical calculations show that the approximations in equa-
tion 15 give errors of at most 0.04 for ρI and at most 0.122
radians (or 7◦) for τ1 and µI .

In summary, the distribution of the initiation times (Fig-
ure 4, equations 14,15) depends on the dimensionless rate
M as follows. In the limit M → ∞ the influence of the
periodic process disappears and the initiation times become
uniformly distributed on [0, 2π]. For finite values of M how-
ever, the initiation times are not uniformly distributed and
have a mean direction µI in the range [π, 3π/2]. Initiation
events are ‘most probable’ at a point between the time of de-
creasing strength τ = π and the time of minimum strength
τ = 3π/2. When M ≥ 1 all initiation times are possible
and the distribution of initiation times departs from unifor-
mity by a factor 1/M (so that the mean resultant length is
ρI = 1/2M)). The ‘most probable’ time for initiation events
in this case is τ = π. On the other hand, when M < 1 some
initiation times are impossible and the distribution departs
more significantly from uniformity. The range of possible
initiation times becomes concentrated around τ = 3π/2 as
M → 0.

Table 1 shows the rates Aω of several periodic processes
of geophysical interest. We note in particular that the rate
of loading by semi-diurnal ocean tides is several orders of
magnitude greater than the rates due to other, longer pe-
riod processes. Thus, if it is reasonable to assume that the
same linear rate m is applicable on all timescales in Table
1, we should expect value of the dimensionless rate M to be
several orders of magnitude smaller for semi-diurnal tidal

loading than for the other processes. This would then imply
that the non-uniformity (and hence mean resultant length
ρI) in the initiation times should be significantly greater
for tidal processes than for the longer period processes. At
first sight, this may seem strange given that the evidence
for non-uniformity is stronger at the annual timescale than
it is at the tidal timescale. We propose that the resolution
of this apparent paradox lies in the fact that it is ‘failure
events’ rather than ‘initiation events’ which are observed
and recorded. In particular, we shall show below that it is
quite possible for the distribution of the initiation times to
be highly non-uniform, but for the distribution of the failure
events to be very close to uniform.

3.1. The distribution of the initiation times when M
is drawn from a distribution

The distribution of the initiation times in equation 11 was
derived under the assumption that the load function could
be assumed to increase linearly on the timescale of the pe-
riodic process, so that the dimensionless rate M could be
considered to be fixed. We now consider briefly the effect
of relaxing this assumption. In a geophysical context, dif-
ferent values of M might occur at different locations (and
at different times) because of variations in geological condi-
tions or differences in the physical processes leading to an
initiation event. We stress that we consider the value of M
related to any particular initiation event to be deterministic,
although it is almost certainly unknown. We are concerned
with the statistics of a very large number of different ini-
tiation events (such as those corresponding to all recorded
volcanic eruptions above a certain magnitude). It seems
reasonable, therefore, to extend the results derived above
by allowing the dimensionless rate M to be a random vari-
able in the range [0,∞) drawn from some distribution with
PDF g(M). It then follows that the PDF of the initiation
times should take the modified form

f̂I(τ) =

∫ ∞

0

g(M)fI(τ ;M)dM (16)

where the PDF fI(τ ;M) is given by equation 11. In gen-
eral terms, the integral in equation 16 shows that f̂I(τ) is
a ‘weighted average’ of individual PDFs fI(τ ;M). Thus,
if we had some reason to suppose that the dimensionless
rate M were ‘usually’ greater than unity, we might expect
the PDF f̂I(τ) to be dominated to the contribution of the
pure cardioid PDFs in figure 4c, and so f̂I(τ) would itself
be approximately a pure cardioid. On the other hand, if M
were less than unity ‘sufficiently often’, we might expect the
extended cardioid PDFs of figure 4d to have a significant ef-
fect on the integral and for the PDF f̂I(τ) to be noticeably
asymmetric.

To illustrate this principle we consider one special case
which yields a simple result. If the distribution of rates
g(M) happens to be of such a form that dimensionless rates
less than unity never occur (i.e. g(M) = 0 for all M < 1),
then equation 16 reduces to the simpler form

f̂I(τ) =
1

2π

[
1−

[∫ ∞

1

g(M)

M
dM

]
cos τ

]
(17)

In this case the PDF f̂I(τ) is simply a pure cardioid dis-
tribution of the form given in equation 11 except that the
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parameter M−1 in equation 11 has simply been replaced by

its mean value E[M−1].

Unfortunately, it is not clear what form the PDF of the

rates g(M) is likely to take in any particular geophysical ap-

plication of this theory. Nonetheless, the use of equation 16

can be illustrated with a specific example which is at least

physically plausible. We suppose for simplicity that there

exists some minimum rate M0. In physical terms, we imag-

ine that the existence of some ‘long period’ physical process

ensures that the linear rate of increase m cannot drop below

a level corresponding to this limiting process. We then sup-

pose for illustrative purposes that M is drawn from a Pareto

distribution with shape parameter α > 0, so that the PDF

of the rates is

g(M) = αMα
0

1

M1+α
, M ∈ [M0,∞) (18)

Figure 5. The PDF of the initiation times f̂I(τ) when M is
drawn from a Pareto distribution (equation 18) with shape
parameter α = 1. PDFs are shown for various values of
the minimum rate M0. Periodic variations in strength are
shown above for comparison.

Figure 6. The PDF of the distribution of the dimension-
less response times fR(τ ; τ0) if the response times are drawn
from the wrapped exponential distribution of equation 22.

By way of heuristic physical justification for this functional
form, we note solely that the Pareto family of distributions
has density functions which are ‘negative powers’ of the ran-
dom variable. Such power-law distributions occur frequently
in physics when processes are distributed over a wide range
of scales.

If M0 ≤ 1, it is possible for the dimensionless rate M to
take values less than unity and the integral in equation 16
must be evaluated numerically. If M0 ≥ 1, however, we can
use equation 17 to get the simple expression

f̂I(τ) =
1

2π

[
1−

(
α

1 + α

)
1

M0
cos τ

]
if M0 ≥ 1 (19)

In other words, if the minimum rateM0 is greater than unity,
the PDF f̂I is a weighted average of pure cardioid PDFs and
is itself a pure cardioid. Conversely, if it is possible for M
to take values less than unity, the PDF f̂I loses its symme-
try and becomes ‘peaked’ near τ = 3π/2. Some examples of
PDFs f̂I(τ) derived in this way are shown in Figure 5b in the
case α = 1 (so that g(M) ∼ 1/M2). PDFs f̂I(τ) are shown
for various values of the minimum rate parameter M0.

In summary, it is possible to treat the dimensionless rate
M as a random variable with PDF g(M) in which case the
distribution of the initiation times has a PDF of the form
given in equation 16. We suggest, however, that unless the
distribution g(M) is known there is little to be gained by
doing so. For example, if M is a random variable drawn
from a Pareto distribution with minimum rate M0 ≥ 1 and
shape parameter α, then the resulting distribution of the ini-
tiation times fI(τ ;M) is indistinguishable from that which
arises when the parameter M is assigned the constant value
α/M0(1 + α).

For this reason, we shall assume for the remainder of this
paper that the dimensionless rate M is fixed.

4. The distribution of the response times

In the previous section we discussed the statistical distri-
bution of the (dimensionless) initiation times fI(τ ;M). We
now consider the distribution of the (dimensional) response
time tR, which is the length of time which elapses between
an initiation event and a failure event (Figures 1,2). We
treat the response time as a random variable in the range
[0,∞) drawn from a statistical distribution with PDF f̃R(t).
Of course, the precise form of this distribution depends on
the physics of the failure process, which may be unknown.
Nonetheless it is possible to illustrate the general principles
of this approach by assuming a particular functional form
for the distribution of the response times. Specifically, we
suppose for simplicity that the response times are drawn
from an exponential distribution with mean response time
t0. The exponential distribution is arguably the simplest of
all distributions representing a failure process since it has
a constant hazard function (i.e. the probability of failure
in a small time interval [t, t + dt], given that no failure has
occurred before time t, is dt/t0 [Kalbfleisch and Prentice,
1980]). Assuming then that the response times are drawn
from an exponential distribution it follows that the PDF of
the (dimensional) response times is

f̃R(t; t0) =
1

t0
exp

(−t
t0

)
(20)

It is helpful to nondimensionalise the response time tR and
the mean response time t0 using the angular frequency of
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the periodic process ω:

τR = ωtR, τ0 = ωt0 (21)

As in previous sections, we can consider the dimensionless
response time τR to lie within the restricted range [0, 2π] pro-
vided that we replace the exponential distribution of equa-
tion 20 with an appropriately wrapped circular distribution
[Mardia and Jupp, 2000]. It can then be shown that the
distribution of the dimensionless response times τR (on the
interval [0, 2π]) is given by the wrapped exponential distri-
bution [Jammalamadaka and Kozubowski, 2001]:

fR(τ ; τ0) =
exp

(
−τ
τ0

)
τ0

(
1− exp

(
−2π
τ0

)) (22)

Graphs of this wrapped exponential PDF are shown for sev-
eral values of the dimensionless mean response time τ0 in
figure 6. It can be shown that the mean resultant length ρR

and mean direction µR of this wrapped exponential distri-
bution are given [Jammalamadaka and Kozubowski, 2001]
by:

ρR =
1√

1 + τ2
0

, µR = tan−1 τ0 (23)

In summary, if the response time is assumed to be drawn
from a wrapped exponential distribution then its distribu-
tion depends on a single parameter: the dimensionless mean
response time τ0. If τ0 ≈ 0 the response time is negligibly
short compared to the period of the periodic process and
we should expect the dimensionless failure time τF to be
approximately equal to the dimensionless initiation time τI .
In this case the distribution of the failure times will be con-
trolled by (and approximately equal to) the distribution of
the initiation times. On the other hand, for larger values
of the dimensionless mean response time τ0 we expect the
response time to have a significant effect and for the distri-
bution of the failure times to differ from the distribution of
the initiation times. In particular, in the limit τ0 → ∞ the
distribution of the response times approaches the uniform
circular distribution. In this case we should expect the dis-
tribution of the failure times to be approximately uniform
also, even if the distribution of the initiation times is highly
non-uniform.

5. The distribution of the failure times

The dimensionless failure time τF is by definition the sum
of the dimensionless initiation time τI and the dimension-
less response time τR (considered mod 2π). Since all three
of these quantities are regarded as random variables on the
interval [0, 2π], it follows [Mardia and Jupp, 2000] that the
PDF of the failure time is given by the convolution:

fF (τ ;M, τ0) =

∫ τ

0

fI(s;M)fR(τ − s; τ0)ds

+

∫ 2π

τ

fI(s;M)fR(2π + τ − s; τ0)ds

(24)

Equations 11 and 22 can therefore be combined using equa-
tion 24 to give the PDF of the distribution of the failure

times:

fF (τ ;M, τ0) =


A exp

(
−τ
τ0

)
τ ∈ [0, τ1)

h (τ) +B exp
(
− τ
τ0

)
τ ∈ [τ1, τ2]

A exp
(

2π − τ
τ0

)
τ ∈ (τ2, 2π]

(25)

where the function h(τ) takes the form of a ‘pure cardioid’
PDF:

h (τ) =
1

2π

[
1−

cos
(
τ − tan−1 τ0

)
M

√
1 + τ2

0

]
(26)

and where the constants A and B are defined by:

A =
h(τ2) exp

(
τ2 − 2π

τ0

)
− h(τ1) exp

(
τ1 − 2π

τ0

)
1− exp

(−2π

τ0

)
B =

h(τ2) exp
(
τ2 − 2π

τ0

)
− h(τ1) exp

(
τ1
τ0

)
1− exp

(−2π

τ0

) (27)

Equation 25 shows that the PDF of the distribution of the
failure times takes different forms inside and outside the in-
terval [τ1, τ2]. Outside this interval, the PDF fF (τ ;M, τ0)
has the form of a wrapped exponential distribution. Within
the interval [τ1, τ2], however, the PDF fF (τ ;M, τ0) is the
sum of a ‘pure cardioid’ component h(τ) and a wrapped
exponential component.

The theory of circular distributions [Mardia and Jupp,
2000] shows that the mean resultant length ρF and mean
direction µF of the distribution of the failure time are given
by:

ρF = ρIρR, µF = µI + µR (28)

The mean resultant length ρF and mean direction µF of the
distribution of the failure times are shown as functions of the
parameters M and τ0 in Figure 7a,b. Equation 28 reveals
how the distribution of the response times (equation 22)
modifies the distribution of the initiation times (equation
11) to give the distribution of the failure times 25. The fact
that µR = tan−1 τ0 implies that the mean failure time lags
the mean initiation time by a radian angle tan−1 τ0. Sim-
ilarly, the effect of the mean resultant length ρR of the re-
sponse time is make the mean resultant length of the failure
times ρF less than the mean resultant length ρI of the initi-
ation times by a factor

√
1 + τ2

0 . Thus, the non-uniformity
of the failure times is always less than the non-uniformity of
the initiation times.

If M ≥ 1, then τ1 = 0, τ2 = 2π, A = h (0) and B = 0.
The PDF of the failure times (equation 25) then simplifies
to:

fF (τ ;M, τ0) =
1

2π

[
1−

cos
(
τ − tan−1 τ0

)
M

√
1 + τ2

0

]
, (29)

the mean resultant length and mean direction are:

ρF = 1

2M
√

1 + τ2
0

µF = π + tan−1 τ0

}
if M ≥ 1 (30)

and it follows that the distribution of the failure times is
a pure cardioid distribution (Figure 7d). If the mean re-
sponse time is much less than the period of the periodic
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process (τ0 � 1) then the response time of the system is
negligible and the PDF of the failure times approaches the
PDF of the initiation times. Thus, when M ≥ 1 and τ0 � 1
the most probable failure time occurs when the strength is
decreasing (Figures 7b,d). On the other hand, if the mean
response time is much greater than the period (τ0 � 1) then
the distribution of the failure times becomes more uniform
than the distribution of the initiation times. In this case
the most probable failure time moves towards the time of
minimum strength / maximum load.

If M < 1 the PDF of the inititiation times is an extended
cardioid and the PDF of the failure times takes the more
complicated form shown in Figure 7c. Nonetheless, the same
qualitative results hold as in the case when M ≥ 1. When
τ0 � 1 the response time is negligible and the distribution
of the failure times is similar to the distribution of the ini-
tiation times. On the other hand, when τ0 � 1 the effect of
the long response time is to smooth any non-uniformity in
the initiation time and make the distribution of the failure
times approach uniformity. It can be shown that

ρF ≈ 1
2

√
4− 3M
1 + τ2

0

µF ≈ π
2

[
3−

√
M + 1

2M(M − 1)
]

+ tan−1 τ0

 if M < 1 (31)

In summary, the properties of the distribution of the fail-
ure times are controlled by the dimensionless rate M (which
controls the initiation time) and the dimensionless mean re-
sponse time τ0 (which controls the response time). When
M < 1 the distribution of the initiation times is signifi-
cantly non-uniform but the distribution of the failure times
can nonetheless be close to uniform if τ0 is sufficiently large.

6. Use of the model to estimate parameter
values

In the previous sections we derived a complete statistical
description of the distributions of the initiation, response
and failure times under a number of simplifying assump-
tions (equations 11, 22, 25). We now present two examples
of how this model can be used to estimate parameter val-
ues from geophysical data, if the magnitude A and angular
frequency ω of the periodic process under consideration are
known. We emphasise that a fitting procedure of this sort
can never prove that a statistical model is a good represen-
tation of physical reality. Nonetheless, it is of interest to see
what values of the controlling parameters M and τ0 are con-
sistent with a given set of observations under the assumption
that the model is valid.

In general, the data in an investigation of periodic be-
haviour consist of a set {tF,1, . . . , tF,n} of ‘failure times’
such as the times at which earthquakes have occurred or
volcanoes have erupted. In order to apply the model de-
veloped here we assume that any non-uniformity at an-
gular frequency ω is caused by a known periodic process
(such as changes sea level or barometric pressure) of am-
plitude A which might plausibly affect a ‘load function’
or a ‘strength function’. We can then nondimensionalise
the data by defining the set of dimensionless failure times
{τF,i = ω(tF,i − tp) (mod 2π)}. The phase parameter tp is
chosen so that a dimensionless failure time τF = 0 corre-
sponds to the time in the periodic cycle at which the peri-
odic process is increasing (if positive values correspond to
increased ‘load’) or decreasing (if positive values correspond

to increased ‘strength’). We stress again that the results dif-

fer by a phase angle π (or 180◦) according to whether the pe-

riodic process is assumed to affect the load or the strength.

Once the failure times have been nondimensionalised, the

(sample) first trigonometric moments can be calculated:

C̄ =
1

n

n∑
j=1

cos τF,j , S̄ =
1

n

n∑
j=1

sin τF,j . (32)

These are the sample equivalents of the population moments

given in equation 12. The (sample) mean resultant length

R̄ and the (sample) mean direction θ̄ are then given by

R̄ exp(iθ̄) = C̄ + iS̄ (33)

which is the sample equivalent of equation 13. The aim now

is to use the data to produce estimates M̂ and τ̂0 of the

two dimensionless parameters M and τ0 in the model for

the failure times. A reasonable strategy is to demand that

the model have the same first trigonometric moments as the

data. Accordingly, we define M̂ and τ̂0 to be the values of M

and τ0 for which µF = θ̄ and ρF = R̄. The principle of this

inversion is illustrated by the plots in Figure 7a,b. Observed

values of the mean resultant length R̄ and mean direction θ̄

constrain the model parameters M and τ0 so that ρF and

µF lie on the contours corresponding to R̄ and θ̄ in Figures

7a,b. In theory, therefore, measured values of R̄ and θ̄ could

be used to infer values of M̂ and τ̂0. In practice, of course,

measured values of R̄ and θ̄ have associated error bars and

so it will only be possible to specify a range of values of

M̂ and τ̂0 which are consistent with the data. In the fol-

lowing sections we illustrate this principle with two specific

examples.

6.1. Annual periodicity in volcanic eruptions

We now present an interpretation of some data for the fre-

quency of volcanic eruptions. We consider periodic processes

on two timescales: an annual period of 365 days (denoted

by the subscript ‘a’) and a tidal period of 12 hours (denoted

by the subscript ‘t’). Mason et al. (2002) suggest that the

monthly rate of volcanic eruptions varies by about ±10%

over the course of a year and so the sample mean resultant

length (at the annual timescale) is R̄a = 0.05. Their data

also suggest that if annual changes in sea level are assumed

to be the periodic process causing this non-uniformity, then

θ̄a = 210◦ ± 30◦. On the other hand, no strong evidence

of non-uniformity on the (daily) tidal timescale has been

found [Mason et al., 2002] and so we expect that the sample

mean resultant length on the tidal timescale should be much

smaller: R̄t � 0.05.

We now assume that the dominant periodic processes on

these timescales are annual variations in barometric pressure

and tidal variations in sea level. From Table 1 we deduce

that reasonable parameter values are:

Aa = 1000 Pa, ωa = 2 · 10−7 rad.s−1

At = 10, 000 Pa, ωt = 1.45 · 10−4 rad.s−1 (34)

We can now use the theory developed in the previous sec-

tions to estimate a typical linear rate of stress increase at

volcanoes m and a typical mean response time t0 of volca-

noes to an initiation event. Our constraints are ρF,a = 0.05,
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Figure 7. Properties of the distribution of failure times fF (τ ;M, τ0) as functions of the dimensionless
rate M and the dimensionless mean response time τ0. (a) Contours of the mean resultant length ρF ;
(b) Contours of the mean direction µF measured relative to the dimensionless time τ = 0 at which the
periodic part of the strength is increasing. Note that these contours are labelled in degrees rather than
radians for ease of interpretation; (c) Examples of the PDF fF (τ ;M, τ0) in a case where M < 1 (thin
lines). For comparison, the distribution of the initiation times fI(τ ;M) is shown as a thick line, and the
uniform distribution is shown as a dotted line; (d) As for (c) but in a case where M ≥ 1;.

µa = 210◦ ± 30◦ and ρF,t � 0.05. The dimensionless rate
and dimensionless mean response time are given at the two
timescales by:

Ma = m
Aaωa

, τ0,a = ωat0

Mt = m
Atωt

, τ0,t = ωtt0
(35)

and so equations 28 and 31 imply that

τ0,a ≈
√

4− 3Ma

4R2
a

− 1 if Ma < 1

τ0,a =

√
1

4M2
a R̄

2
a

− 1 if Ma ≥ 1

(36)

For each possible value of m the mean failure times on both
timescales can be calculated (Figure 8a) under the con-
straint ρF,a = R̄a = 0.05. Since µF,a is constrained by
the observation θ̄a = 210◦ ± 30◦ we deduce that the model
is consistent with the observations for values of the dimen-
sional rate m between 2 · 10−3 Pa.s−1 and 4 · 10−3 Pa.s−1.
We note that this range includes the ‘typical rate of increase
of tectonic stress’ m ∼ 2.8 · 10−3 Pa.s−1) quoted by Vidale

et al. (1998). Equations 35 and 36 can also be used to cal-
culate the mean response time t0 and the mean resultant
length on the tidal timescale ρF,t as a function of the rate
m (Figure 8b). We note that the mean resultant length on
the tidal timescale ρF,t is less than 0.01 for all consistent
values of the rate m, and that the mean response time t0 is
constrained to be less than about 100 days.

We have shown that the model developed above is con-
sistent with observations of periodicity in volcanic activity
provided that (1) the mean response time t0 is less than
about 100 days, and (2) the linear rate m lies between
2 · 10−3 Pa.s−1 and 4 · 10−3 Pa.s−1. In order to give the
observed mean resultant length R̄a = 0.05 the values of m
and t0 are constrained to lie on the line shown in Figure 8b.
If m is at the lower end of the permissible range, then the
distribution of the initiation times is relatively non-uniform
and so the mean response t0 must be relatively large in order
to smooth out this non-uniformity to give the observed non-
uniformity in the failure times. On the other hand, if m is at
the upper end of the permissible range then mean response
time t0 must be so small that the influence of the response
time is negligible. In this limit the non-uniformity in the
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Figure 8. Figures illustrating the range of parameter values consistent with observations of periodicity
in the rate of volcanic eruptions. Mason et al. (2002) consider mean sea level as the periodic process
and find that the sample mean resultant length on an annual timescale is R̄a = 0.05 and the sample
mean direction is θ̄a = 210◦±30◦. (a) The mean failure time on the annual timescale µF,a and the mean
failure time on the tidal timescale µF,t as functions of the linear rate of stress accumulation m. It is
assumed that positive crustal loads lead to positive perturbations in the load function xL(t). The range
of the sample mean direction (shaded) suggests that m lies between 2 · 10−3 Pa.s−1 and 4 · 10−3 Pa.s−1;
(b) The (dimensional) mean response time t0 and mean resultant length on the tidal timescale ρF,t as
functions of the linear rate m. The range of m deduced in (a) is shaded.

failure times is controlled entirely by the non-uniformity in
the initiation times.

6.2. Seismicity following the Landers earthquake

We now discuss briefly a second example of some data to
which our theory can be applied, this time in the context
of seismic activity. Gao et al. (2000) report the number
of seismic events per day in the Western USA following the
Landers earthquake in 1992. They note a periodicity on
an annual timescale in which the number of events per day
varies annually by ±30% compared with the mean number
of events per day. This corresponds to a sample mean re-
sultant length R̄a ≈ 0.15. Gao et al. (2000) correlate this
non-uniformity with annual variations in local barometric
pressure, noting that annual barometric pressure lows pre-
cede annual seismic highs by about 90 days (or ≈ 90◦). This
corresponds an observed mean failure time θ̄a = 180◦ if it
is assumed that barometric highs correspond to maxima in
a ‘load function’ xL(t). Gao et al. (2000) suggest that this
phase lag between barometric highs and peak seismicity is
due to hydrological diffusion. We suggest an alternative ex-
planation for this phase lag in terms of our model. We use
the contour plots in figure 7 and equations 28, 31 to inter-
pret their data. The observations R̄a ≈ 0.15 and θ̄a = 180◦

are consistent with a model of this form with τ0 <≈ 1 and
M ≈ 3. In dimensional terms, the constraint τ0 <≈ 1
means that the mean response time t0 is less than about
58 days. The changes in barometric pressure have magni-
tude A = 1 kPa and angular frequency ω = 2 ·10−7 rad.s−1,
and so the constraint M ≈ 3 suggests a linear tectonic stress
rate of m ≈ 6 · 10−4 Pa.s−1.

7. Conclusions

We have derived exact mathematical results from a sim-
ple model describing the influence of an external periodic

process on the times at which generic ‘failure events’ (such
as earthquakes and volcanic eruptions) occur.

In our model, an initiation event at the initiation time
tI occurs when a ‘load’ function exceeds a ‘strength’ func-
tion. Following the initiation event the system fails after
a response time tR so that the observed failure time is
tF = tI + tR. In the absence of any periodic process we
assume for simplicity that the load and the strength ap-
proach each other linearly at rate m. The presence of the
external periodic process imposes sinusoidal oscillations of
the form A sinωt on either the load or the strength. The
distribution of the initiation times is then given by equation
11 and is governed by the dimensionless rate M = m/Aω.
This parameter is the ratio of the rate of change of the lin-
ear process to the maximum rate of change of the periodic
process. The distribution of the failure times then depends
on the distribution of the response times. For simplicity, we
consider the particular case where the response times are
exponential distributed with mean response time t0 (equa-
tion 22). In this case the distribution of the failure times
(equation 25) is governed by two dimensionless parameters:
the dimensionless mean response time τ0 = ωt0 and the di-
mensionless rate M .

Our model is deliberately simplistic, but we suggest that
it provides a useful framework for interpreting evidence of
periodicity in earthquakes and volcanic eruptions on a wide
range of timescales.

Appendix A: Derivation of the PDF of the
initiation times

If the dimensionless initiation time τ lies in a region where
dξS/dτ ≥ 0 then Figure 9a applies. We consider an infinites-
simally small section of the load function ξS(τ) of length ds.
It follows from triangle KJL that

tanψ =
dξS

dτ
= cos τ (A1)
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We now consider two load lines of rate M which correspond
to initiation times τ and τ + dτ . Both of these load lines lie
at an angle θ to the τ -axis. It follows from triangle JNP
that

tan θ = M (A2)

Since we have assumed that τT is uniformly distributed
on the interval [0, 2π] it follows that the probability of a load
line lying between lines 1 and 2 is dτT /2π. This is equal to
the probability fI(τ ;M)dτ of an initiation event occurring
in the interval [τ, τ + dτ ]. We therefore deduce the general
relationship

fI(τ ;M) =
1

2π

dτT

dτ
(A3)

Consideration of triangles KJL and QLN shows that

dτ

ds
= cosψ,

dσ

dτT
= sin θ (A4)

Figure 9. Sketch of the geometrical relations used in the
derivation of the PDF of the initiation times fI(τ ;M). In
both panels the strength curve is shown in bold running be-
tween J and L. Two load lines (corresponding to different
values of the time translation parameter τT ) are shown in
bold and intersect the strength curve at J and L. The cor-
responding initiation events occur at times τ and τ + dτ .
(a) Sketch for the case dξS/dτ ≥ 0; (b) Sketch for the case
dξS/dτ ≤ 0.

while triangle NJL implies that

dσ

ds
= sin(θ − ψ) (A5)

Using the identity sin(θ − ψ) = sin θ cosψ − cos θ sinψ, it
follows from equations A2, A3, A4 and A5 that

fI(τ ;M) =
1

2π

[
1− tanψ

M

]
, if

dξS

dτ
≥ 0 (A6)

If dξS/dτ ≤ 0, a result analogous to equation A6 can be
derived (Figure 9b). It is easily shown that equations A2,
A3 and A4 apply as before but equation A1 must now be
replaced by

tanψ = −dξS

dτ
= − cos τ (A7)

and consideration of triangle NJL in Figure 9b shows that
equation A5 must be replaced by

dσ

ds
= sin(θ + ψ) (A8)

Using the identity sin(θ + ψ) = sin θ cosψ + cos θ sinψ, and
equations A2, A3, A4 and A8 we deduce that:

fI(τ ;M) =
1

2π

[
1 +

tanψ

M

]
, if

dξS

dτ
< 0 (A9)

Equations A1, A6, A7 and A9, yield:

fI(τ ;M) =

{
1
2π

[
1− cos τ

M

]
if τ ∈ [τ1, τ2]

0 otherwise
(A10)

where the range of validity [τ1, τ2] of the PDF has yet to
be determined. Since fI(τ,M) is a PDF it must be non-
negative on [τ1, τ2] and satisfy an integral constraint of the
form ∫ τ2

τ1

fI(τ ;M)dτ = 1 (A11)

The minimum and maximum initiation times τ1 and τ2 can
now be derived as functions of M by considering the cases
M ≥ 1 and M < 1 separately.

Firstly, when M ≥ 1, Figure 3a shows that all initiation
times in the range [0, 2π] are possible. Also, we note from
equation A10 that

fI(τ ;M) ≥ 0,∀τ ∈ [0, 2π],

∫ 2π

0

fI(τ ;M)dτ = 1(A12)

It follows that

τ1 = 0, τ2 = 2π if M ≥ 1 (A13)

We now consider the case when M < 1. Initiation events
are now restricted to occur between time limits which are
functions of M (Figure 3b). On geometrical grounds, we
deduce that the maximum initiation time τ2 is the value of
τ in the range [0, 2π] for which ξS(τ) ≤ 0 and for which a
load line ξL(τ) is tangent to the strength curve ξS(τ). With
the convention that the inverse cosine function cos−1(M)
returns a radian value in the range [0, π], it follows that τ2
satisfies:

τ2 = 2π − cos−1(M) (A14)
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Geometrical considerations (Figure 3b) show that the min-
imum initiation time τ1 is the value of τ at which a load
line tangent to the strength curve at τ2 − 2π intersects the
strength curve. Since the load line has slope M , this means
that τ1 satisfies

sin τ1 = sin(τ2 − 2π) +M(τ1 − (τ2 − 2π)) (A15)
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