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A physically–motivated index of sub–gridscale pattern
Tim E. Jupp1,2 and Sean D. Twiss3

Abstract. Earth Observation data on land surface properties such as albedo is typ-
ically collected at a pixel resolution of 1 km or less. Global climate models, on the other
hand, are constrained by current limits on computing power to run at a gridbox reso-
lution of 10 km or more. This mismatch in spatial scales means that large amounts of
pixel–scale information are condensed into a small number of gridbox–scale summary statis-
tics before use in global climate models. Subgridscale patterns in land surface proper-
ties may have a significant effect but the summary statistics currently in use – such as
the gridbox mean and gridbox variance – are insensitive to the spatial arrangement of
pixels. To address this gap in the information available to global climate models we de-
fine here a new gridbox–scale summary statistic – the Laplacian pattern index – that
is sensitive to the spatial arrangement of pixels. This dimensionless index is based on
the mean–squared value of the Laplacian filter ∇2 within the gridbox, and is motivated
by the physics of diffusive heat transport. We investigate the value of the index in some
simple cases and show that it is a measure of the local correlation structure within a
gridbox. This allows us to generate random gridboxes in which the index takes (on av-
erage) a prescribed value. The Laplacian pattern index is designed to be a useful mea-
sure of subgridscale pattern in numerical climate models, but can be used as a measure
of pattern in any two–dimensional array of real–valued data.

1. Introduction

The aim of this paper is to enhance the flow of use-
ful information from remotely–sensed observations of land–
surface properties to numerical simulations of climate.
Whilst the former are available at a relatively fine pixel scale
(∆x) ∼ 1 km or less, the latter must be undertaken at a rel-
atively coarse gridbox scale N(∆x) ∼ 10− 100 km [e.g., Es-
sery et al., 2003]. It is therefore necessary for the observed
pixel–scale land–surface properties to be summarized at the
gridbox–scale before they can be used in climate models.

Subgridscale patterns in land–surface properties may
have a significant effect on climate–atmosphere interactions
[e.g., Giorgi and Avissar, 1997; Koster and Suarez, 1992;
Molod and Salmun, 2002]. For example, it is reasonable to
expect that a boundary between two land–surface types (e.g.
forest and grassland) will have some localized effect on land–
atmosphere fluxes. This edge effect will be confined to the
region within some critical lengthscale of the boundary. The
typical lengthscale of any pattern in land–surface properties
is then of crucial importance [e.g., Blyth, 1995; Raupach
and Finnigan, 1995; Mahrt, 2000]. If the lengthscale is suffi-
ciently large then edge effects are relatively unimportant and
each land–surface type interacts essentially independently
with the atmosphere. In this situation a ‘tile’ (also known
as ‘mosaic’) model for the land–surface is appropriate, with a
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separate surface energy balance being applied for each land–
surface type. On the other hand, if the pattern lengthscale is
sufficiently small then edge effects dominate and a ‘mixture’
land–surface model – in which the surface energy balance is
solved for the mixed land–surface – is required [Koster and
Suarez, 1992]. It should therefore be possible, using remote
sensing, to determine whether a mosaic or mixture strat-
egy is appropriate for each gridbox in a numerical climate
model. In order to do so a numerical measure of subgridscale
pattern is required.

There is no shortage of pattern metrics in existence for
data in categorical form. For data of this type the pixels are
assigned to qualitative classes and pattern can be analyzed
with tools including fractal dimension, typical patch size
and area:perimeter ratio [e.g., McGarigal and Marks, 1995;
Gustafson, 1998; Saura and Mart́ınez–Millán; 2001]. In this
paper, however, the aim is to define a pattern metric for
real–valued (quantitative) data. For data of this type geo-
statistical tools such as the variogram and correlogram pro-
vide measures of spatial correlation structure, while Fourier
and wavelet analysis yield insight into the typical spatial
scales of variation [Cressie, 1991]. The Laplacian pattern
index defined here is designed to complement these geosta-
tistical techniques. The difference is that it is motivated
explicitly by consideration of the physics of diffusive pro-
cesses.

As a particular example, consider the case in which the
Earth Observation data consist of pixel–scale values of the
co–albedo α within a gridbox, as in Figure 1. (The co–
albedo α is defined by α = 1 − a where a is the albedo.
It follows that the fAPAR – the fraction of absorbed pho-
tosynthetically active radiation – is the co–albedo for light
of a particular color.) Let 〈.〉 denote the area average of
pixel–scale values within the gridbox. Currently, the grid-
box mean µ0 (and occasionally the gridbox variance σ2

0) of
the pixel–scale values are used as gridbox–scale summaries
of the land-surface properties:

µ0 = 〈α〉, σ2
0 = var(α) = 〈α2〉 − 〈α〉2 (1)

(Here and subsequently the subscript 0 refers to the origi-
nal gridbox. An absence of subscripts will imply a generic
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expression with no particular gridbox being implied.) The
statistics µ0 and σ2

0 are clearly useful, but both are insensi-
tive to the spatial arrangement of pixels within a gridbox –
that is, they are invariant under pixel shuffling. (We use the
term shuffling to denote a random reordering of the pixels
within a gridbox, with all pixels being regarded as distin-
guishable.) It follows that the two gridboxes in Figure 1 -
which may interact very differently with the atmosphere -
would be treated as equivalent by a climate model whose in-
formation was limited to the gridbox mean µ0 and the grid-
box variance σ2

0 . The purpose of this paper is to develop
an additional, physically meaningful gridbox–scale statistic
that is not invariant under pixel shuffling.

The structure of this paper is as follows. Section 2 con-
tains a heuristic motivation for the Laplacian pattern in-
dex, using the particular example of energy balance at the
earth’s surface. This leads to the operational definition of
the Laplacian pattern index in Section 3. Section 4 contains
a discussion of the interpretations that can be placed on the
index. To this end the index is calculated for some simple
deterministic and random patterns as well as for some real
remote sensing data. Conclusions are presented in Section
5.

2. Physical motivation

The motivation for the Laplacian pattern index comes
from considering the surface energy balance of a pixel with
co–albedo α. In particular it derives from an analysis of how
the surface energy balance of a gridbox is changed when dif-
fusive lateral fluxes between the pixels are suddenly switched
on.

In the absence of lateral fluxes, the energy balance for
each pixel is independent of the other pixels and can be
written as:

αR = A+BT

where R is the incoming solar radiation (in W m−2) and T
is the surface temperature [North, 1981]. A and B are con-
stants in a linearization of the outgoing vertical energy flux.
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Figure 1. (a) Values of fAPAR α in an original (un-
shuffled) gridbox, and the corresponding distribution
of Laplacian Filter values ∇2α, which has variance s2

0.
(Data from the gridbox containing Cambridge, U.K., in-
dicated by a cross in Figure 5b). (b) The same pixels,
randomly shuffled and the subsequent effect on the dis-
tribution of ∇2α. Pixels in the original gridbox are pos-
itively correlated with their neighbors, those in the shuf-
fled gridbox are essentially uncorrelated. The unshuffled
variance s2

0 is therefore smaller than the shuffled variance
s2. The Laplacian pattern index λ0 is based on the ratio
of these two variances.

It follows that – in the absence of lateral fluxes – surface
temperature is a linear function of co–albedo. Now imagine
that the presence of the atmosphere allows lateral fluxes to
be set up between neighboring pixels with different surface
temperatures. For simplicity, suppose that these fluxes are
of the form −k∇T where k is a constant and ∇ denotes the
horizontal spatial gradient. The energy balance equation for
the rate of change of surface temperature becomes

CṪ =
Rα−A
B

+ k∇2T

where C is an area heat capacity in J m−2 K−1. The term
k∇2T represents accumulation of energy due to lateral fluxes
from neighboring pixels. Since the temperature is – when
the lateral fluxes are first switched on – a linear function of
the co–albedo, this motivates the use of the Laplacian filter
∇2α as a physically-meaningful parameter for each pixel.
An interpretation of ∇2α is that it is (proportional to) the
pixel–scale energy accumulation due to lateral fluxes at the
moment when they are first switched on. To move from this
pixel–scale variable to a gridbox–scale parameter it is help-
ful to consider the distribution of values of ∇2α within a
gridbox.

At first sight one might expect that the mean value within
a gridbox 〈∇2α〉 would prove useful since it is proportional
to the mean energy accumulation per pixel. It follows from
the divergence theorem, however, that 〈∇2α〉 ≈ 0. (The
physical explanation is as follows: the energy accumulation
due to lateral fluxes is positive at some pixels and negative at
others. Every packet of energy exported by one pixel is im-
ported by another and so the average energy accumulation
per pixel is zero). Since the first moment of the distribution
is unhelpful, attention can be turned to the second moment

〈
(
∇2α

)2〉 which quantifies the mean–squared energy accu-
mulation per pixel. Specifically, consider the observed vari-
ance s2

0 of the distribution of ∇2α in the original gridbox:

s2
0 = var(∇2α) = 〈(∇2α)2〉 − 〈∇2α〉2 (2)

The standard deviation s0 can be interpreted as being (pro-
portional to) the root–mean–square energy accumulation
per pixel due to lateral fluxes.

3. The Laplacian pattern index λ

A gridbox scale index of pattern can now be derived, in-
spired by the physical motivation in the previous section.
Suppose that the pixel-level data α in a gridbox are known
and that the pixels are square with size (∆x). (It will be
shown later that one can set (∆x) = 1 without affecting the
value of the index.) The Laplacian filter ∇2α at each pixel
αj is

(
∇2α

)
j

=
−4αj + αN + αS + αE + αW

(∆x)2
(3)

where the neighboring pixels αN , αS , αE , αW occupy the
north, south, east and west positions about the central pixel
αj in the 5–point Laplacian stencil:

αN
αW αj αE

αS

(4)

(The 5–point stencil can be applied at edge pixels by impos-
ing cyclic boundary conditions on the gridbox.) This yields
a distribution of values of ∇2α within the gridbox as shown
in Figure 1a. The variance of this distribution is then given
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by equation 2. In general, small values of s2
0 correspond to

structured gridboxes in which pixels are positively correlated
with their neighbors and hence lateral fluxes are relatively
small. Unstructured gridboxes in which pixels are uncorre-
lated with their neighbors produce larger lateral fluxes and
hence larger values of s2

0. The special case in which pixels
are negatively correlated with their neighbors produces the
largest values of s2

0. (This is discussed in more detail in
Section 4.1).

The next step is to define a dimensionless measure of
whether an observed value of s2

0 is large or small. One way
to do this is to compare s2

0 – calculated for the original grid-
box – with the value that one would expect to obtain in a
randomly shuffled version of the gridbox (e.g. Figure 1b).
Accordingly, define the random variable

S2 = 〈(∇2α)2〉 − 〈∇2α〉2 in a shuffled gridbox

It is important to stress that S2 is a random variable whose
value depends on which of the many possible shufflings of
the original gridbox happens to have been picked. To remove
this ambiguity consider its expected value E(S2) where E (.)
denotes the expectation taken over the ensemble of all pos-
sible shufflings of the original gridbox.

The following ratio might then be chosen as a dimension-
less gridbox–scale index of pattern:

λF =
s2

0

E (S2)
(5)

The subscript F emphasizes that this is a formal definition
rather than a practical one. For a real gridbox, exact calcu-
lation of E

(
S2
)

is prohibitively expensive since the number
of possible shufflings of a gridbox is so large. For this reason,
a more practical index is defined in the next section.

3.1. A practical Laplacian pattern index: λ0

In this section a practical Laplacian pattern index λ0

is defined. It is helpful to consider the limit of an in-
finitely large randomly shuffled gridbox. In this limit all
non–identical pixels are uncorrelated, so that 〈αjαN 〉 = 0,
〈αSαN 〉 = 0 and so on, while the pixel variance is σ2

0 =
〈α2
i 〉 − 〈αi〉2 (equation 1). It therefore follows (from consid-

ering the expected value of the square of equation 3) that

var
(
∇2α

)
=

(−4)2 + 12 + 12 + 12 + 12

(∆x)4 σ2
0

= 20σ2
0

(∆x)4

in the limit of an infinitely large shuffled gridbox. The pix-
els in a randomly shuffled gridbox are not, strictly speaking,
uncorrelated, but they will be approximately so when the
number of pixels in the gridbox is large. It follows that the
expected value of S2 is given approximately by

E(S2) ≈ 20σ2
0

(∆x)4
(6)

For this reason, it is reasonable to replace the strict defi-
nition of the Laplacian pattern index (equation 5) with a
practical definition:

λ0 =
(∆x)4 s2

0

20σ2
0

for σ2
0 6= 0 (7)

(The index is left undefined for a uniform gridbox σ2
0 = 0.)

This constitutes the operational definition of the Laplacian
pattern index (along with equations 1 and 2). Note that the

index is dimensionless and that the pixel size (∆x) cancels
between equations 2, 3 and 7. For the purpose of calculating
the index, therefore, units may chosen such that (∆x) = 1
in these equations.

4. Examples and interpretation

It is helpful to consider the values the Laplacian pattern
index takes in a few simple cases. In this section upper and
lower bounds for the index are considered, and gridboxes
that are equivalent to the original gridbox (in the sense of
having similar values of µ, σ2 and λ) are constructed. Fi-
nally the use of the index is illustrated with some remote
sensing data.

4.1. Example: Binary data

Consider first of all the simplest case in which the pixel–
level data take one of two values, which may be taken as 0
(black) and 1 (white) [Cressie, 1991]. Let p denote the pro-
portion of white pixels, so that µ0 = p and σ2

0 = p(1 − p).
For each pixel define its 4 immediate neighbor pixels to be
those in the north, south, east and west positions in the 5–
point Laplacian stencil of equation 4, with cyclic boundary
conditions being imposed for edge pixels. Each pixel can
now be placed into one of 5 classes according to the number
i = 0, 1, 2, 3, 4 of its immediate neighbors that are of the
complementary color. Thus, a black pixel surrounded by 4
white pixels is in class i = 4, while a white pixel surrounded
by 4 white pixels is in class i = 0. Setting (∆x) = 1 for
simplicity it follows from equation 3 that a pixel in class i
has a Laplacian filter value ±i. We now let pi denote the
proportion of all pixels within the gridbox that lie in class
i. For example, in the special case in which all pixels are
the same color, every pixel is in class 0 and so p0 = 1 while
p1 = p2 = p3 = p4 = 0. Returning to the case of an arbi-
trary binary gridbox, it follows from equation 7 that

λ0 =
(±1)2p1 + (±2)2p2 + (±3)2p3 + (±4)2p4

20p(1− p)
=

p1 + 4p2 + 9p3 + 16p4

20p(1− p)
(8)

This formula allows the Laplacian pattern index λ0 to be
calculated for any binary gridbox. In particular it can be
used to illustrate the range of values of λ0.

Consider the case of a unit chessboard in which every
pixel is of a different type to its immediate neighbors (Fig-
ure 2a). Half the pixels are white (p = 0.5), while all pixels

Figure 2. Examples of binary (black–and–white) grid-
boxes, each containing M × N pixels. (a) A unit chess-
board gridbox in which each pixel is of a different color to
its immediate neighbors. This gridbox has the maximum
possible Laplacian pattern index λ0 = 3.2. (b) A highly
structured block gridbox containing equal blocks of color,
each of size M/2×N pixels. The Laplacian pattern index
for this block pattern is λ0 = 0.8/M which tends to zero
as the number of pixel rows M →∞.
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have 4 neighbors of complementary color (p4 = 1). This
means that p0 = p1 = p2 = p3 = 0 and hence λ0 = 3.2
(equation 8). It is intuitively clear that this gives the maxi-
mum possible value of λ0 amongst all binary gridboxes since
each pixel has the maximum possible value of (∇2α)2. In
fact, the result applies more generally. It can be shown that
the upper bound λ0 ≤ 3.2 applies for all types of gridboxes
and not just those with binary pixel values (Appendix A).

The Laplacian pattern index λ0 is by definition non–
negative, and it is intuitively clear that minimal values of
λ0 are associated with structured gridboxes in which neigh-
boring pixels are positively correlated. As an example of a
very low value of λ0, consider the case of two equal blocks
of color, each of size M/2 ×N pixels (Figure 2b). Half the
pixels are white (p = 0.5) and since cyclic boundary condi-
tions have been imposed, a total of 4N out of the MN pixels
have one neighbor of complementary color (p1 = 4/M). The
remaining pixels have no neighbors of complementary color
(p0 = 1 − 4/M , p2 = p3 = p4 = 0) and hence λ0 = 0.8/M
(equation 8). This represents a very low value of the Lapla-
cian pattern index.

4.2. An equivalent deterministic gridbox

Suppose that observed values of µ0 σ
2
0 and λ0 have been

obtained from an original gridbox (e.g. Figure 1a). In order
to gain understanding of what a given value of λ0 means
it is helpful to ask what other gridboxes would yield simi-
lar values for these three statistics. Such gridboxes will be
labelled ‘equivalent’.

An example of a regular pattern for which the statistics
µ0, σ2

0 and λ0 can be calculated occurs when the pixel values
are given by a sine wave with wavenumber k:

α = A+B sin kx sin ky
∇2α = −2Bk2 sin kx sin ky

For simplicity suppose that the gridbox has side–lengths
M(∆x) and N(∆x) that are integer multiples of the wave-
length 2π/k. Assume also that the wavelength is much
larger than the pixel size k(∆x) � 1 so that the sinusoidal
pattern is resolvable at the pixel scale. The variances of the
pixel–values and the Laplacian Filter (equations 1 and 2)
are then:

σ2
0 =

1

2
B2, s2

0 = 2B2k4

It then follows that

λ0 =
k4(∆x)4

5

from equations 6 and 7. Thus, given observed values of µ0,
σ2

0 and λ0 from an original gridbox, there is an equivalent
sine–wave gridbox with wavenumber k = (5λ)1/4/(∆x) in
which the pixel values are:

µ0 +
√

2σ2
0 sin

[
(5λ0)1/4 x

(∆x)

]
sin

[
(5λ0)1/4 y

(∆x)

]

In other words, a gridbox with Laplacian pattern index λ0

is equivalent to one with a sine–wave pattern of wavelength

l = 2π(5λ0)−1/4 · (∆x) (9)

4.3. Equivalent stochastic gridboxes

An alternative way of generating gridboxes equivalent to
the original gridbox is to define a statistical distribution
from which random gridboxes can be generated. These ran-
dom gridboxes should have values for the gridbox mean µ,
gridbox variance σ2 and Laplacian pattern index λ that are

similar to those in the original gridbox (denoted by µ0, σ2
0

and λ0). In this section a procedure is outlined for produc-
ing random gridboxes with these properties. It is straight-
forward to rescale the pixel values in random gridboxes to
ensure that µ = µ0 and σ2 = σ2

0 . The Laplacian pattern in-
dex λ, on the other hand, is unaffected by the rescaling and
remains a random variable whose value varies from random
gridbox to random gridbox. It is, however, possible to set
the expected value of λ equal to λ0 by imposing an appropri-
ate spatial correlation structure on the random gridboxes.

It is helpful to represent a random gridbox – in reality an
M×N array of pixel values – with a vector α of length MN .
The aim is to define a suitable probability density function
f(α) for the random vector α. Define the vector U and the
matrix Q as follows:

U = 1
MN

(1, 1, 1, . . . , 1)T

Q = 1
MN

I − U · UT

where the superscript T denotes a transpose and I denotes
the MN ×MN identity matrix. The gridbox mean µ and
gridbox variance σ2 can then be expressed as an inner prod-
uct and a quadratic form:

µ(α) = UTα
σ2(α) = αTQα

Similarly, the values of the Laplacian filter within a grid-
box can be represented (to within a multiplicative factor)
by the vector Lα, where L is the matrix representing the
linear operator

1√
20MN

∇2

with cyclic boundary conditions. The factor
√

20MN is
included in the definition for convenience and means that
the Laplacian pattern index can be expressed as a ratio of
quadratic forms:

λ(α) =
αTLTLα

αTQα

A gridbox α satisfying αTQα 6= 0, can be rescaled by the
transformation:

α→ σ0
α−MN · (UTα)U√

αTQα
+ µ0 ·MN · U (10)

This transformation rescales the gridbox mean and variance
to the desired values µ0 and σ2

0 , but since it is linear, it
leaves the Laplacian pattern index λ unchanged. To ensure
that the index is typically close to λ0, it is reasonable to
impose the constraint

Ef (λ(α)) = λ0 (11)

where Ef (.) denotes an expectation taken over the distribu-
tion of random gridboxes. (The subscript f emphasizes that
this is not the same as an expectation over all shufflings as
in Section 3.) For simplicity, some natural symmetries can
be imposed on the distribution f . Accordingly, the grid-
box α is assumed to be statistically isotropic and invariant
under translation so that the pixels are statistically indistin-
guishable. With these symmetries, the correlations between
a pixel and its neighbors can be expressed by the M × N
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array:

. . . . . . .

. . . r02 . . .

. . r11 r01 r11 . .

. r02 r01 1 r01 r02 .

. . r11 r01 r11 . .

. . . r02 . . .

. . . . . . .

(12)

where r01, r02, r11, . . . denote correlation co–efficients, so
that, for example, cor(αi, αi) = 1 and cor(αi, αE) = r01.
For clarity only the correlation coefficients closest to the
central pixel have been shown. With (∆x) = 1 the Lapla-
cian pattern index for a random gridbox α can be written

λ(α) =
var(−4αi + αN + αS + αE + αW )

20var(αi)
.

The variances in this expression can be replaced by covari-
ances according to the identity var(X) = cov(X,X), and
then by correlations according to the identity cor(X,Y ) =

cov(X,Y)/
√

var(X)var(Y ). It then follows that the con-
straint of equation 11 can be rewritten as a constraint on
the local correlation structure:

Ef (λ(α)) = λ0 =
5− 8r01 + r02 + 2r11

5
(13)

This demonstrates that the Laplacian pattern index λ0 can
be interpreted as a measure of local correlation structure. (A
helpful analogy can be drawn with the structure functions
of homogeneous isotropic turbulence in which correlations
are expressed as functions of spatial separation [e.g., Frisch,
1995]).

A gridbox distribution having the required correlation
structure (equation 13) can now be defined by rescaling
(equation 10) gridboxes drawn from a zero–mean multivari-
ate normal distribution with covariance matrix Σ:

f(α) =
1

(2π)MN/2|Σ|1/2 exp
(
−1

2
αTΣ−1α

)
(14)

Here, the covariance matrix has determinant |Σ| and inverse
Σ−1 [Kendall and Stuart, 1963]. Each row of the covari-
ance matrix Σ has length MN and can be interpreted as
a rescaled, reshaped version of the M × N correlation ar-
ray in equation 12. The difference is that the covariance
matrix contains rows of covariances Σij = cov(αi, αj) while
the stencil is an array of correlations cor(αi, αj). It is helpful
to normalize the covariance matrix to ensure that it is also
a matrix of correlations. This requires that all the diagonal
elements of Σ be unity. Since all pixels are assumed to be
statistically indistinguishable this is equivalent to imposing
the constraint tr(Σ) = MN where tr(.) denotes the trace of
a matrix.

It can be shown that when α is drawn from a zero–mean
multivariate normal distribution with covariance matrix Σ
an arbitrary quadratic form αTPα is a random variable with
mean tr(PΣ) and variance 2tr(PΣPΣ) [Kendall and Stuart,
1963]. Since the gridbox variance σ2 can be rescaled to unity
without changing the pattern index (equation 10), it follows
that the Laplacian pattern index λ(α) is a random variable
with mean tr(LTLΣ) = λ0 and variance 2tr(LTLΣLTLΣ).

Thus, for a zero–mean multivariate normal distribution
with the assumed symmetries (equation 14), two constraints
are to be imposed on the covariance matrix Σ:

tr(Σ) = MN
tr(LTLΣ) = λ0

(15)

The first constraint normalizes the covariance matrix to en-
sure that its elements are correlations in the range [−1, 1].
The second constraint ensures that the expected value of the
Laplacian pattern index λ(α) is equal to the imposed value
λ0 taken from the original gridbox.
4.3.1. The city–block correlation structure

One way to satisfy the constraints of equation 15 is to
impose the correlation structure:

Σij = rd(i,j) (16)

where r is an appropriate constant (determined below) and
d(i, j) is the distance between pixels αi and αj in the grid-
box, calculated according to the city–block metric with
cyclic boundary conditions. (The city–block distance be-
tween two pixels is the least number of north–south and/or
east–west moves required to travel between them.) The city-
block correlation structure is represented by the array

. . . . . . .

. . . r2 . . .

. . r2 r r2 . .

. r2 r 1 r r2 .

. . r2 r r2 . .

. . . r2 . . .

. . . . . . .

(17)

in the notation of equation 12. The constant r can be inter-
preted as an immediate neighbor correlation since it is the
correlation coefficient between a pixel and any of its four im-
mediate neighbors. Comparison with the generic correlation
structure (equation 12) shows that the required constraints
(equation 13) can be satisfied provided that the immediate
neighbor correlation r satisfies:

r =
4−

√
1 + 15λ0

3
(18)

This relationship is illustrated in Figure 3. Note that λ0 = 0
corresponds to r = 1 (immediate neighbors perfectly posi-
tively correlated), λ0 = 1 corresponds to r = 0 (immediate
neighbors uncorrelated) and λ0 = 3.2 corresponds to r = −1
(immediate neighbors perfectly negatively correlated). Ran-
dom gridboxes generated using the city–block correlation
structure are shown in Figure 4.
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Figure 3. The immediate neighbor correlation structure
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of the expected Laplacian pattern index λ0 (equation 18).
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Figure 4. Random gridboxes equivalent (in the sense defined in the text) to the original gridbox in
Figure 1a. Each gridbox has the imposed gridbox mean µ0 and the imposed gridbox variance σ2

0 .

4.3.2. Stochastic gridboxes: summary
A probability distribution for generating gridboxes equiv-

alent to an original gridbox has been outlined. The gridbox
distribution is a zero–mean multivariate normal distribution
with a suitable correlation structure defined by its covari-
ance matrix Σ (equation 14). The procedure for generating
an equivalent random gridbox is as follows: (1) Generate
a random gridbox α from the probability density function
(equation 14). (2) Rescale the gridbox to have the required
gridbox mean µ0 and gridbox variance σ2

0 (equation 10).
The Laplacian pattern index λ of the rescaled gridbox is
then a random variable with mean tr(LTLΣ) = λ0 and vari-
ance 2tr(LTLΣLTLΣ).

4.4. Example: fAPAR data

It is helpful at this point to illustrate the calculation of
the Laplacian pattern index for some real remote sensing
data. In the illustrative example given in Figure 5 the data
consist of fAPAR values for Western Europe in September
2000 (downloaded from http://fapar.jrc.it). The origi-
nal data consist of a grid of 1531 × 1376 pixels whose reso-
lution is approximately 2 km (Figure 5a). After masking of
non–land pixels, these data were aggregated up to an array
of 43×47 gridboxes, each of size 32×32 pixels (M = N = 32)
so that the gridboxes are nominally of size 64 km × 64 km.
For each gridbox, values of the gridbox mean µ0 and grid-
box variance σ2

0 can easily be calculated (Figure 5b,c). A
traditional climate model would have access to these two
statistics as gridbox level summaries of the fAPAR field. It
would therefore be aware – for example – of the low fAPAR
in North Africa and Iberia, and the similarity in fAPAR be-
tween Ireland and the Low Countries. This is clearly useful
information, but the next step is to examine the impact of
additional information about subgridscale pattern provided
by the Laplacian pattern index.

The Laplacian pattern index λ0 was calculated for each
gridbox and the results are shown in Figure 5d. It is clear
that there are coherent regional patterns in the Laplacian
pattern index λ0 with noticeably high values in Ireland,
Scotland and Eastern Europe (Figure 5d). These high values
suggest that the lengthscale of land–surface fAPAR patterns
in these areas is relatively small. From the point of view of
climate modelling this highlights the potential for regional
differences in subgridscale land-surface processes. For exam-
ple, Ireland and Northern France have very similar values of
the gridbox mean and gridbox variance (Figure 5b,c), but
strikingly dissimilar values of the Laplacian pattern index
(Figure 5d). It follows that different parameterizations of
subgridscale processes might be appropriate for these two
regions.

Interpretation of the Laplacian pattern index can be
helped by considering the two parameters defined in this

paper that are simple functions of it. These two parameters
are effectively rescaled versions of the Laplacian pattern in-
dex, designed in such a way as to yield physically meaningful
interpretations. Firstly, the wavelength of an equivalent si-
nusoid, l, is given by equation 9 and is shown in Figure 5e.
This represents the wavelength of a sinusoidal pattern that
would produce the observed value of the Laplacian pattern
index. In the example shown this varies from < 5 pixels in
Ireland and Eastern Europe to around 7 pixels in Southern
Europe. Secondly, the immediate neighbor correlation of an
equivalent gridbox, r, is given by equation 18 and shown
in Figure 5f. This represents the correlation coefficient be-
tween neighboring pixels in a stochastic pattern that would
produce the observed value of the Laplacian pattern index.
With this interpretation the variations in land-surface pat-
tern are revealed by the correlation between neighboring pix-
els being lower than 0.4 in Ireland but greater than 0.6 in
Southern Europe.

In summary, the example data in Figure 5 illustrate how
the Laplacian pattern index can be used to quantify subgrid
patterns in land–surface properties, and to show how the
lengthscale of subgrid variability changes regionally. This
information could be used in deriving subgrid parameteri-
zations within numerical models.

5. Conclusions

In this paper a new index of pattern – the Laplacian pat-
tern index λ0 – has been defined and its properties investi-
gated. The index can be calculated for any 2–d field of real-
valued data on a lattice, such as fAPAR, temperature or
topographic height. It can be interpreted as a dimensionless
measure of gradient–driven flux accumulation, and in par-
ticular as a measure of the similarity of this accumulation
under pixel shuffling. The following properties of λ0 have
been derived. (1)

√
λ0 can be interpreted as the root–mean–

square flux accumulation in the original gridbox divided by
the root–mean–square flux accumulation in a randomly shuf-
fled version of the gridbox. (2) λ0 = 1 means that pixels are
uncorrelated with their immediate neighbors and that there
is complete invariance under pixel shuffling. (3) λ0 < 1
means that pixels tend to be positively correlated with their
immediate neighbors. (4) λ0 > 1 means that pixels tend
to be negatively correlated with their immediate neighbors.
(5) The maximum possible value of λ0 is 3.2 and occurs for a
unit chessboard pattern of alternate black and white pixels
(Appendix A). (6) l = 2π(5λ0)−1/4 can be interpreted as the
wavelength (in pixel units) of an equivalent sine wave (equa-
tion 9). (7) The index can be interpreted as a measure of
local correlation structure. For random gridboxes with the
city–block correlation structure (Section 4.3.1), the imme-
diate neighbor correlation is r = (4−√1 + 15λ0)/3 (Figure
3).
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Figure 5. Illustration of the Laplacian pattern index using Western European fAPAR data for Septem-
ber 2000. (a) Original data at pixel resolution (2 km). (b) Data aggregated to 64 km to give the gridbox
mean µ0. (c) The gridbox variance σ2

0 . (d) The Laplacian pattern index λ0. (e) The wavelength l of an
equivalent sine–wave pattern (equation 9). (f) The immediate neighbor correlation r for an equivalent
city–block pattern (equation 18).

Traditionally, pixel–scale data are aggregated to the
gridbox–scale by calculating the mean µ0 as a measure of
average value and the variance σ2

0 as a measure of spread.

To these two statistics – which contain no information about
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the spatial arrangement of pixels – can now be added the
Laplacian pattern index λ as a measure of pattern. The
additional information provided by the Laplacian pattern
index reveals the typical lengthscales of subgrid variability
and how they change regionally. These lengthscales could
be used in the derivation of subgrid parameterizations in
models.

The Laplacian pattern index index has a number of ad-
vantages over other ways of quantifying pattern. It pro-
duces a single summary statistic (unlike Fourier or wavelet
methods), it applies to real–valued continuous data (unlike
indices such as the area:perimeter ratio which are restricted
to classified data), and it has a natural physical interpreta-
tion. It is hoped that the Laplacian pattern index will prove
useful in numerical climate models as a means of parame-
terizing subgrid scale effects (e.g. determining whether the
mosaic or mixture surface energy balance is appropriate).
More generally, the index could be used as a physically–
motivated measure of pattern for any two–dimensional array
of real–valued data.
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Appendix A: Proof that λ ≤ 3.2

This is a sketch proof that the maximum value of the Laplacian
pattern index arises for a pixel–scale chessboard pattern (Section
4.1, Figure 2a). Suppose for simplicity that µ0 = 0 and label the
pixels surrounding αi in a natural way:

αNN
αNW αN αNE

αWW αW αi αE αEE
αSW αS αSE

αSS

Define

F =
∑
i

(−4αi + αN + αS + αE + αW )2 , G =
∑
i

α2
i

One can extremize F subject to the constraint G = σ2
0 by extrem-

ising H = F − aG where a is a Lagrange multiplier. It follows
(after some algebra), that

∂H
∂αj

= (40− a)αj

− 16(αN + αS + αE + αW )
+ 2(αNN + αSS + αEE + αWW )
+ 4(αNE + αNW + αSE + αSW )

Noting that ∂2H/∂α2
j = 40 − a it is then clear by setting

a = 128 that a pixel–scale chessboard pattern αN = αS =
αE = αW = −αj , αNN = αSS = αEE = αWW = αj and
αNE = αSE = αNW = αSW = αj is a solution for which
∂H/∂αj = 0 and ∂2H/∂α2

j < 0. It therefore maximizes F while

satisfying G = σ2
0 .
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