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We examine the reaction fronts that develop when an undersaturated ‘injection fluid’

displaces a saturated ‘formation fluid’ in a chemically reactive porous medium. We allow

the injection and formation fluids to differ both in temperature and in chemical composi-

tion. The undersaturation of the incoming fluid drives a dissolution reaction and leads to

the formation of a ‘depletion’ front. Under certain circumstances, which we describe, the

temperature difference drives a separate thermal reaction front. We develop long-time

asymptotic solutions of the governing equations which illustrate the interaction between

thermal reaction fronts and depletion fronts. Two distinct regimes arise. If the composi-

tional difference between the injection and formation fluids exceeds a critical value, the

depletion front travels faster than the thermal front, leaving the porous medium depleted

of reactant from the source to a point downstream the thermal front and no thermal reac-

tion front develops. Conversely, if the compositional difference is smaller than the critical

value, a thermal reaction front advances ahead of the depletion front and so there is a

double reaction front structure. We illustrate the evolution of the thermal and composi-

tional fields towards these asymptotic solutions with numerical simulations. We discuss

the implications of this work for secondary mineralisation in subsurface reservoirs.
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1. Introduction

There are numerous industrial and natural situations in which fluid of one tempera-

ture and composition migrates through a permeable rock, displacing an original fluid of

different temperature and composition. Important industrial examples arise in geother-

mal and hydrocarbon reservoirs. In the geothermal case, warm water or superheated

vapour is produced from a subterranean reservoir and replaced by cold water injected by

commercial operators. As the cold water migrates through the reservoir, it heats up and

displaces the original formation fluid. In hydrocarbon reservoirs, the original formation

often contains both water and oil in the pore spaces. As oil is extracted from a producer

well, water is typically introduced at an injector well some distance away. There are also

natural situations in which fluid of one temperature and composition may flood into an

aquifer filled with fluid of a different temperature and composition. Events which might

lead to such flooding include earthquakes and changes in sea-level. The common feature

is that a flow path becomes established between two bodies of water in different thermal

and chemical states.

As an intruding fluid moves through a porous matrix, minerals in solution in the fluid

may become undersaturated or supersaturated as a result of changes in temperature

and pressure, leading to dissolution or precipitation reactions which act to restore the

system to equilibrium (Phillips, 1991). In the geothermal and hydrocarbon industries,

important precipitation reactions include the formation of calcium carbonate, silica and

barium sulphate. In a geological context, the dolomitisation of limestone can occur when

magnesium-rich sea-water percolates through a formation previously flooded with fresh

water. There is considerable interest in the dynamics of these reactions since the associ-

ated changes in permeability may change the pattern and rate of fluid flow through the

rock.
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When fluid is injected into a porous layer at a different temperature, a thermal front

develops across which the temperature of the fluid adjusts to that of the formation. This

thermal front travels more slowly than the fluid itself, since the fluid advances through

the pore space alone, while the thermal signal must propagate through the grains of the

porous medium as well (Phillips, 1991; Woods & Fitzgerald, 1993). As the injected fluid

travels across this temperature front, the solubility of dissolved minerals changes, and

this may lead to precipitation or dissolution and the formation of a thermal reaction

front.

Thermal reaction fronts are quite distinct from the depletion fronts which develop

when undersaturated fluid is injected into a porous layer. In the case of depletion fronts,

the advancing fluid dissolves some of the mineral in the formation to restore the fluid

to chemical equilibrium, and thereby depletes the formation of mineral near the source

of fluid. Phillips (1991) and Hinch & Bhatt (1990) show how these depletion fronts can

be modelled mathematically by considering the conservation of mass and a reaction law

controlling the kinetics of the reaction.

In comparison with depletion fronts, thermal reaction fronts have received relatively

little attention. The main purpose of this work is to develop a model for thermal reaction

fronts, and to explore how they interact with depletion fronts when fluid is injected into

a reactive porous layer. Firstly, we develop a theoretical model of the reactions which

arise when an injection fluid displaces a formation fluid of different composition and

temperature. Secondly, we develop long-time asymptotic solutions which determine the

conditions under which thermal reaction fronts form. Thirdly, we use numerical simu-

lations to illustrate the evolution of the system from the first injection of the fluid to

the long-time asymptotic state. Finally, we consider the implications of our work for the

injection of water in both geothermal and hydrocarbon reservoirs.
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Figure 1. Sketch showing typical solutions at a time t after the injection fluid is first introduced.

Variables are defined in the text. (a) A single reaction front solution in which the thermal front

travels upstream of the depletion front. Fluid concentration c, equilibrium concentration ce and

solid concentration s are shown; (b) A double reaction front solution in which the thermal front

travels downstream of the depletion front. Profiles are of the same quantities as in (a).

Our model concerns a simple displacement flow rather than a multi-phase flow in

which the two fluids are simultaneously present but flow at different rates. Flows of the

latter type, which are considerably more complicated, are considered in similar contexts

by Fayers (1962), Karakas et al. (1986), deZabala et al. (1982) and deZabala & Radke

(1986).

2. The governing equations

We consider the displacement of a formation fluid in a semi-infinite, one dimensional

porous medium occupying the halfspace x > 0 (figure 1). The porous medium is filled

initially with a formation fluid which is in thermal and chemical equilibrium, and fluid

motion begins at time t = 0. For later times t > 0, the injection fluid is introduced at

x = 0 with constant Darcy velocity u in the x-direction.

We suppose that the porous medium contains a single chemically reactive species. This

species can exist either in the solid state on the grains of the porous medium, or as a solute

in the injection and formation fluids. The amount of reactive species in the solid state

is expressed by the ‘solid concentration’ s(x, t) which has dimensions of moles of solid

reactant per unit volume of solid. It follows that unit volume of the fluid-filled porous

medium contains (1 − φ)s moles of reactant in the solid state, where φ is the porosity.

The initial solid concentration in the formation is s(x, 0) = sf . Similarly, the amount of

reactant dissolved in the fluid is expressed by the ‘fluid concentration’ c(x, t) which has
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dimensions of moles of reactant in solution per unit volume of fluid. It follows that unit

volume of the fluid-filled porous medium contains φc moles of dissolved reactant. The

initial fluid concentration in the formation is c(x, 0) = cf .

We now consider the equilibrium concentration ce(x, t) of the dissolved reactant, which

has the same dimensions as the true concentration c. Since the formation fluid is assumed

to be in equilibrium initially, it follows that ce(x, 0) = c(x, 0) = cf . In general, the

equilibrium concentration is a function of the temperature and pressure of the fluid.

Specifically, the equilibrium concentration is given (Nordstrom & Munoz, 1994) by

ce = ce0 exp
(
−∆Gr

RT

)
, (2.1)

where R = 8.3 J.mol−1.K−1 is the gas constant, T is the temperature in Kelvin and

∆Gr(p, T ) is the Gibbs free energy of solution at pressure p and temperature T . The

Gibbs free energy in equation 2.1 is calculated relative to that of a solution at the reference

concentration ce0. For example, in the case of silica at 1 bar and 25◦C, Nordstrom &

Munoz (1994) quote a value ∆Gr = 22.7 kJ.mol−1 with respect to a ‘1 molal reference

concentration’ (corresponding to ce0 = 1000 mol.m−3 in our volumetric concentration

units). For simplicity, we shall assume that the equilibrium concentration is independent

of pressure and that the temperature range is sufficiently small that equation (2.1) can

be approximated by a linear relationship of the form ce = a+ bT . For a prograde mineral

such as silica, ∆Gr > 0 and so b > 0 (Manning, 1994), while for a retrograde mineral

such as anhydrite, ∆Gr < 0 and so b < 0 (Bowers, Jackson & Helgeson, 1984). In the

analysis below we derive a solution which applies equally to prograde and retrograde

minerals.
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2.1. The evolution of temperature and equilibrium concentration

We now consider the evolution of the system when the formation fluid at temperature Tf

and concentration cf is displaced by the injection fluid at temperature Ti and concentra-

tion ci. Phillips (1991, Section 2.8) shows that the evolution of temperature is controlled

by an advection-diffusion equation of the form

∂T

∂t
+

(ρcp)l

φ (ρcp)l + (1− φ) (ρcp)s

u
∂T

∂x
= DT

∂2T

∂x2
+ QH , (2.2)

where DT is the effective thermal diffusivity of the fluid-filled porous medium, taking

account of both molecular diffusion and macroscopic dispersion. The quantity (ρcp)l is

the volumetric heat capacity of the fluid, (ρcp)s is the volumetric heat capacity of the

solid grains of the porous medium and QH is the volumetric rate of heat production by

chemical reactions.

We now consider whether the heat produced or absorbed by chemical reactions (QH)

is significant in the thermal balance. A typical enthalpy of dissolution is at most of order

100 kJ.mol−1, while typical aqueous concentrations are at most of order 10−3 mol.kg−1

(Nordstrom & Munoz, 1994). Since the heat capacity of water is 4.2 kJ.kg−1.K−1 we

expect the temperature change due to reactions to be at most of order 0.02 K. This

is much smaller than the temperature difference (Tf − Ti) of between 1 K and 100 K

which we envisage between the formation and injection fluids. Consequently, we make the

approximation QH = 0. By restricting attention to this regime in which the chemistry

has a negligible effect on the temperature, we are able to decouple the thermal field from

the compositional field.

Returning to equation (2.2), we define the dimensionless number

Γ =
(ρcp)l

φ (ρcp)l + (1− φ) (ρcp)s
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which measures the advective propagation speed of thermal signals as a fraction of the

Darcy velocity. Since it is assumed that ce = a + bT , equilibrium concentration can be

used as a proxy for temperature, and all thermal effects can be described in terms of

the attendant change in equilibrium concentration ce. Accordingly, equation (2.2) can be

rewritten as

∂ce

∂t
+ Γu

∂ce

∂x
= DT

∂2ce

∂x2
. (2.3)

This equation admits front-like solutions associated with changes in temperature and

we shall refer to these as ‘thermal fronts’. Thermal fronts propagate at speed Γu and

spread at a rate governed by the effective thermal diffusivity DT . In the cases where the

thermal front drives a reaction, the associated fronts in the fluid and solid concentrations

will be labelled ‘thermal reaction fronts’. The equilibrium concentration of the injection

fluid is cie = a + bTi. Since we require the injection fluid to be undersaturated, it follows

that ci 6 cie. The formation fluid is saturated initially, so equation (2.3) must be solved

subject to the initial condition ce(x, 0) = cf and the boundary condition ce(0, t) = cie

for t > 0.

2.2. The evolution of fluid concentration and solid concentration

We now consider the chemical transfer of a mineral species between the porous medium

and the fluid. Our approach mirrors that of Phillips (1991, Section 4.3). We assume that

the rate of transfer of reactant from the porous medium to the fluid takes the form

QC = φk

(
s

sf

)
(ce − c)H(s). (2.4)

The purpose of the Heaviside function

H(s) =


0 s 6 0

1 s > 0
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in equation (2.4) is to ensure that the unphysical regime s < 0 does not occur. The

parameter k is a reaction rate constant with dimensions of reciprocal time and QC has

dimensions of moles of reactant per unit volume of fluid-filled porous medium per unit

time. The rate law of equation (2.4) expresses the idea that we expect the rate of reaction

to increase with the amount of solid reactant present on the grains of the porous medium

s, and with the degree of disequilibrium of the fluid (ce − c).

In a real system, the reaction rate constant k is expected to depend on temperature

via an Arrhenius equation (Lasaga, 1998) of the form

k(T ) =
[
kr exp

(
Ea

RTr

)]
exp

(
−Ea

RT

)
, (2.5)

where Ea is the activation energy of the reaction and the reaction rate takes the value

kr at the reference temperature Tr. Lasaga (1984) suggests that an activation energy

Ea = 60 kJ.mol−1 may be considered typical for mineral-water reactions.

In our model, we assume for simplicity that the reaction rate is independent of tem-

perature. This is valid if the change in temperature across the reaction front ∆T is small

compared to the absolute temperature T . Thus, when ∆T/T � 1, the fractional change

in reaction rate associated with the thermal front is small. The assumption of a constant

reaction rate allows us to derive some simple analytical solutions which give insight into

the interaction of thermal and compositional fronts. We shall then consider the effect

which a temperature dependent reaction rate would have on these solutions.

Phillips (1991, Section 2.9) shows that the fluid concentration is controlled by an

advection-diffusion-reaction equation of the form

∂c

∂t
+

(
u

φ

)
∂c

∂x
= DC

∂2c

∂x2
+

QC

φ
, (2.6)

where DC is the effective compositional diffusivity, taking account of both molecular

diffusion and macroscopic dispersion. Thus, in the absence of reactions (QC = 0), there
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is a ‘fluid front’ separating the injection fluid from the formation fluid which travels at

the interstitial fluid speed u/φ and spreads under dispersion and diffusion.

The concentration of reactant in the solid changes because of chemical transfer from the

fluid. To allow for the stoichiometry of the reaction, we suppose that ν moles of dissolved

reactant are required to react fully with one mole of solid reactant. Consequently, a

change δc in the fluid concentration leads to a change δs = −φδc/ν(1− φ) in the solid

concentration. The solid concentration is therefore governed by the equation

∂s

∂t
= − QC

(1− φ)ν
. (2.7)

2.3. Dimensionless form of the governing equations

It is useful to recast the governing equations (2.3), (2.6) and (2.7) in dimensionless

form. The thermal front migrates with speed Γu, and so we introduce the dimensionless

coordinates

ζ =
Γu

DT
(x− Γut), τ =

Γ2u2

DT
t, (2.8)

and the dimensionless concentrations

C(ζ, τ) =
c− ci

cie − ci
, CE(ζ, τ) =

ce − ci

cie − ci
, S(ζ, τ) =

s

sf
. (2.9)

We stress that the dimensionless position ζ moves with respect to the dimensional po-

sition x so that the point of fluid injection x = 0 is given in dimensionless terms by

ζ = −τ .

It follows from equations (2.3), (2.4), (2.6) and (2.7) that the evolution of the system

is governed by the dimensionless system of equations

∂CE

∂τ
=

∂2CE

∂ζ2
, (2.10)

∂C

∂τ
+ V

∂C

∂ζ
= ε

∂2C

∂ζ2
+ PS (CE − C) , (2.11)

∂S

∂τ
− ∂S

∂ζ
= −λPS (CE − C) , (2.12)
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with initial conditions

CE(ζ, 0) = C(ζ, 0) = β and S(ζ, 0) = 1 for ζ > 0, (2.13)

and boundary conditions

CE(−τ, τ) = 1 and C(−τ, τ) = 0 for τ > 0. (2.14)

The five dimensionless parameters which control the system are:

V =
1− φΓ

φΓ
, P =

kDT

Γ2u2
, λ =

φ(cie − ci)
sf (1− φ)ν

, β =
(cf − ci)
(cie − ci)

, ε =
DC

DT
. (2.15)

The parameter V is the dimensionless speed of the fluid front in relation to the thermal

front (figure 1), while the parameter P is a dimensionless reaction rate. The governing

equations show that chemical reaction occurs over a timescale 1/k, while the thermal

front becomes established on a timescale DT /Γ2u2. (This is the value of time t for which

the thermal front has been advected a distance Γut which exceeds the distance
√

DT t

that it has spread under dispersion and diffusion.) Thus, P is the ratio of the timescale

of formation of the thermal front (DT /Γ2u2) to the timescale over which reactions occur

(1/k). The parameter λ is a measure of the undersaturation cie− ci of the injection fluid

which tends to remove solid reactant from the rock. Specifically, λ is the ratio of the

maximum amount of solid reactant which could be removed by this reaction per unit

volume φ(cie − ci)/ν to the amount of solid reactant initially present on the rock per

unit volume (1− φ)sf . The parameter β is the ratio of the difference in composition of

the injection and formation fluids to the undersaturation of the injection fluid. Finally,

ε is a ‘reciprocal Lewis number’ giving the ratio of the effective solutal and thermal

diffusivities. Typically, ε � 1, and solutal diffusion can be neglected. For illustrative

purposes, we shall assume that ε = 0.01 in our simulations.

We note that P is the only dimensionless parameter which depends on the reaction

rate k. It follows that any temperature dependence of the reaction rate in equation (2.5)



Thermally-driven reaction fronts 11

could influence the solution only via the rate parameter P . Accordingly, we shall derive

solutions under the assumption that P is constant and then consider qualitatively the

effect which a temperature dependent P would have on these solutions.

3. Asymptotic solutions of the equations at large times

Ogata & Banks (1961) give an exact solution of equation (2.10) with conditions (2.13)

and (2.14):

CE(ζ, τ) = 1 + (β− 1)
1 + erf(ζ/2τ1/2)− erfc((ζ + 2τ)/2τ1/2) exp (ζ + τ)

2
, (3.1)

where erf (x) = 2√
π

∫ x

0
exp(−y2) dy and erfc (x) = 1 − erf (x). Since erfc (x) ∼

1√
π
x−1 exp(−x2) as x → ∞, the final term can be approximated at long times, and

we can obtain

CE(ζ, τ) ≈ 1 + (β− 1)
1 + erf(ζ/2τ1/2)

2
, τ � 1 (3.2)

which corresponds to a localised thermal front about ζ = 0. The condition τ � 1

in equation (3.2) reflects the fact that the thermal front becomes established over a

dimensionless timescale of order unity. We note that the equilibrium concentration (or

equivalently, the temperature) is known exactly for all times and evolves independently

of any chemical reactions. This is a result of our assumption that the thermal effect of

reactions (the term QH in equation (2.2)) is negligible.

Before considering the evolution of the fluid and solid concentrations, it is useful to

recognise that two distinct types of solution may be expected depending on the relative

speeds of the thermal front and the depletion front (figure 1). The change in equilibrium

concentration across the thermal front tends to drive a reaction between the fluid and

the rock. No such thermal reaction front can form, however, if the porous medium has
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already been depleted of reactant by the passage of the depletion front. Thus, if the

depletion front moves faster than the thermal front, we expect a single reaction front

solution with no thermal reaction front (figure 1a). Conversely, if the depletion front

moves more slowly than the thermal front, we expect a double reaction front solution in

which a thermal reaction front develops in addition to the depletion front (figure 1b).

To determine the conditions under which each of these regimes arises, we present a

solution for the case of a single reaction front, and compare the calculated speed of this

depletion front with the speed of the thermal front. We then develop an asymptotic

solution for the case of a double reaction front where the thermal front moves faster than

the depletion front and leads to the formation of a thermal reaction front.

3.1. Single reaction front solutions

We now find asymptotic solutions to equations (2.11) and (2.12) in the case where the

depletion front travels downstream of the thermal front as in figure 1a. Following Phillips

(1991) we expect the depletion front to be described by travelling wave solutions of the

form C(ζ − v1τ), S(ζ − v1τ), where v1 > 0 to ensure that the depletion front front lies

downstream of the thermal front. The boundary conditions are C = S = 0 for ζ = −τ

and C → β, S → 1 as ζ →∞. The asymptotic solution at long times is

C =
β

1 + exp(−ω1(ζ − v1τ))
, S =

1
1 + exp(−ω1(ζ − v1τ))

. (3.3)

Direct substitution yields

v1 =
(

λβ(1 + V )
(1 + λβ)

− 1
)

, ω1 =
P (1 + λβ)

1 + V
. (3.4)

Our assumption that v1 > 0 implies the condition

λV β > 1 (3.5)
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for this single reaction front solution to be valid. In physical terms, this is equivalent to

the condition

(cf − ci) > sf
(1− φ)Γν

1− φΓ
. (3.6)

We deduce that a single reaction front of the depletion type will occur if (i) the difference

in concentration between the formation and injection fluids is sufficiently large; (ii) the

concentration of the reactant on the rock is sufficiently small, or (iii) the speed of the

thermal front is sufficiently small. Furthermore, we deduce that if the injected fluid has

a greater concentration than the original formation fluid (ci > cf ) then this single front

structure is impossible and a double front structure must develop. For example, in the

case of a prograde mineral, it would be possible to have ci > cie > cf if the injection

fluid were much hotter than the formation fluid. Conversely, if the injected liquid has a

lower concentration than the formation fluid (ci < cf ), then either a single reaction front

or a double reaction front may develop, depending on whether inequality 3.6 is satisfied.

3.2. Double reaction front solutions

We now consider the nature of the solution in the case where the thermal front travels

faster than the depletion front as in figure 1b. We derive separate asymptotic solutions

in the region of the thermal front and in the region of the depletion front.

3.2.1. Depletion front

As in §3.1, the depletion front is governed by equations (2.11) and (2.12) and we expect

travelling wave solutions of the form C(ζ + v2τ), S(ζ + v2τ), with the restriction that

v2 > 0 so that the depletion front lies upstream of the thermal front. Far upstream of

the depletion front (ζ � −v2τ) we require C = 0 and S = 0. Conversely, in the region

between the thermal front and the depletion front (−v2τ � ζ � 0) we require C = 1

and we set S = α. The constant α will be determined in §3.2.2 from consideration of the
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thermal reaction front. The asymptotic solution at long times is then seen to be

C =
1

1 + exp(−ω2(ζ + v2τ))
, S =

α

1 + exp(−ω2(ζ + v2τ))
, (3.7)

by analogy with §3.1. Direct substitution yields

v2 = 1− λ(1 + V )
λ + α

, ω2 =
P (λ + α)

1 + V
. (3.8)

Our assumption that v2 > 0 implies the condition

λV

α
< 1 (3.9)

for this double reaction front solution to be valid.

3.2.2. Thermal reaction front

We now solve for the reaction which develops across the thermal front. It is useful to

define the dimensionless coordinate

η =
ζ

2
√

τ
, (3.10)

so that equation (3.2) can be written as

CE (η, τ) ≈ f0 (η) , τ � 1 (3.11)

where

f0 (η) = 1 + (β− 1)
1 + erf(η)

2
. (3.12)

It can be shown that

d2f0

dη2
= −2η

df0

dη
. (3.13)

The governing equations (2.11) and (2.12) become

∂C

∂τ
+

1
2

(
V τ−1/2 − ητ−1

) ∂C

∂η
− 1

4
ετ−1 ∂2C

∂η2
+ PS (C − CE) = 0, (3.14)

∂S

∂τ
+

1
2

(
−τ−1/2 − ητ−1

) ∂S

∂η
− λPS (C − CE) = 0. (3.15)
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For sufficiently long times the boundary conditions of equations (2.13) and (2.14) can be

approximated by S = 1, C = β for η � 0 and S = α, C = 1 for η � 0. We seek an

asymptotic solution of the form

C (η, τ) =
∞∑

n=0

fn (η) τ−n/2, S (η, τ) =
∞∑

n=0

gn (η) τ−n/2. (3.16)

Substitution into the governing equations (3.14) and (3.15), use of the relation (3.13)

and matching powers of τ can be used to yield the sets of functions {fn(η)} and {gn(η)}

(Appendix A). The leading order terms f0(η) and g0(η) give the asymptotic solution

C = CE , S = 1 + λV (CE − β) (3.17)

which is valid at long times. Evaluating equation (3.17) for S at long times in the region

η � 0, we deduce that

α = 1 + λV (1− β). (3.18)

Combining this with the solution for the depletion front (equation (3.8)), we find that

v2 = 1− λ(1 + V )
1 + λ + λV (1− β)

, ω2 =
P (1 + λ + λV (1− β))

1 + V
(3.19)

and so the critical case in which v2 = 0 and the thermal and depletion fronts overlap is

given by

λV β = 1 (3.20)

which is consistent with inequality (3.5) derived from the analysis of a single reaction

front.

4. Summary of the different asymptotic solutions

The analysis above shows that several qualitatively different solutions may arise de-

pending on the change in equilibrium concentration across the thermal front and the

degree of undersaturation of the injected fluid. We now describe the range of possible
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Figure 2. The three possible long-time asymptotic regimes when the equilibrium concentration

of the injection fluid exceeds that of the formation fluid (β < 1). This occurs when hot fluid

displaces cold (in the case of a prograde mineral) or when cold fluid displaces hot (in the case of

a retrograde mineral). The diagrams on the left show the solution profiles. The diagrams on the

right show the path of a fluid particle (solid line) in ce − c space from the point of injection to

the final equilibrium downstream of the reaction fronts. The dotted line represents equilibrium.

Figure 3. As figure 2, but showing the two possible long-time asymptotic regimes when the

equilibrium concentration of the formation fluid exceeds that of the injection fluid (β > 1). This

occurs when cold fluid displaces hot fluid (in the case of a prograde mineral) or when hot fluid

displaces cold fluid (in the case of a retrograde mineral).

asymptotic solutions and illustrate our discussion with figures 2 and 3. In each case shown

in these figures, the left-hand diagram shows the asymptotic solution profiles while the

right-hand diagram shows the path of a fluid particle in ce− c space as it moves through

the formation. The left- and right-hand diagrams can be interpreted in tandem by bear-

ing in mind that a fluid particle always travels faster than any of the reaction fronts.

Specifically, we consider a fluid particle injected at x = 0 (or ζ = −τ) in an initial state in

which ce = cie and c = ci. After it has flowed past any fronts (ζ � V τ) it achieves a final

state in which ce = cf and c = cf . The changes in state associated with the particle’s

passage through the fronts are seen as the step-changes in the profiles of ce and c in the

left-hand diagrams. In terms of the right-hand diagrams, the fluid particle’s motion past

the fronts is represented by a path through state-space from the initial point (cie, ci) to

the final point (cf , cf ).

If the injection fluid has a greater equilibrium concentration than the formation fluid

(β < 1) then there are three types of solution as shown in figure 2. Firstly, when the

injection fluid has a concentration in excess of the formation fluid (β < 0), a double
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front structure develops for all values of λ as shown in §3.1. A depletion front is formed

upstream of the thermal front (figure 2a). The fluid returns to equilibrium across this

depletion front, and then advances to the thermal front, across which it reaches the for-

mation temperature and maintains chemical equilibrium by precipitating. The situation

is similar when the composition of the injected fluid is slightly less than that of the for-

mation fluid (λV β < 1) (figure 2b). Finally, when the composition of the injection fluid

is much less than that of the formation fluid (λV β > 1), the depletion front outruns the

thermal front (figure 2c). In this case there is no thermal reaction front. The injection

fluid first adjusts to the formation temperature at the thermal front although no reaction

takes place here and the fluid remains undersaturated. It then adjusts to the appropriate

equilibrium concentration when crossing the depletion front.

If the injection fluid has a lower equilibrium concentration than the formation fluid

(β > 1), two different types of solution can develop as shown in figure 3. Firstly, when the

concentration of the injection fluid is slightly less than that of the formation fluid (λV β <

1), a depletion front develops near the source, upstream of the thermal front (figure 3a).

Incoming fluid reaches chemical equilibrium (at the injection temperature) across this

front. Further downstream, the fluid reaches the thermal front, where it dissolves more of

the reactant in the solid matrix in order to retain chemical equilibrium as it changes to

the formation temperature. Finally, when the concentration of injection fluid is much less

than that of the formation fluid (λV β > 1), the depletion front outruns the thermal front,

and a single reaction front develops downstream of the thermal front (figure 3b). In this

case, the fluid adjusts to the formation temperature when crossing the thermal front. No

reaction takes place here and the fluid remains undersaturated. Subsequently, the fluid

attains chemical equilibrium at the formation temperature by crossing the depletion

front.
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5. Evolution of the system towards asymptotic solutions

The analysis above captures the variety of reaction front structures which may develop

at long times as fluid is injected into a formation. We now examine how the system

approaches these asymptotic solutions by considering the dimensionless timescales over

which the various structures in the asymptotic solutions form.

The timescale over which the depletion front becomes established can be defined as

the timescale over which S → 0 at the injection point ζ = −τ . It then follows from

equations (3.3) and (3.7) that the depletion front becomes established when τ ∼ 1/λβP

in the case of a single front and when τ ∼ 1/λP in the case of a double front. We

argued in §2.3 that the thermal front becomes established when τ ∼ 1. An analogous

argument shows that the fluid front becomes established when τ ∼ ε/(1 + V )2. The

manner in which the system approaches the long-time asymptotic solution depends,

therefore, on the relative magnitudes of these timescales. We stress that the appropriate

long-time asymptotic solution shown in figures 2 and 3 is determined by the values of

the parameters λ, β and V which quantify compositional differences and frontal speeds.

The manner in which the asymptotic solution is approached over time, however, depends

on the additional parameters P and ε which quantify the rates at which diffusion and

reaction operate. For example, the parameter P has been regarded as a constant in this

model. If the temperature dependence of the reaction rate were to be included, P would

not be constant and the timescale taken to reach the asymptotic solution would change.

The asymptotic solution at long times, however, would be unaffected.

5.1. Numerical simulations

We now present some numerical solutions of the initial value problem of §2, to illustrate

the different ways in which a given long-time asymptotic solution can be approached.

The solutions were calculated using the PDECOL solver package of Madsen & Sincovec
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Figure 4. Numerical simulations showing the approach to the asymptotic solution in the case

of a single reaction front. Parameter values used in this example are: λ = 1, β = 2, V = 2,

and ε = 0.01. Hence v1 = 1 and ω1 = P . (a) The evolution of fluid concentration c, equi-

librium concentration ce and solid concentration s when P = 0.01. Profiles are shown for

τ = 0.1, 0.32, 1, 3.2, 10, 32, 100, 320, 1000, 3200, 10000; (b) same as (a) but with P = 100, and

with profiles shown for τ = 0.001, 0.0032, 0.01, 0.032, 0.1, 0.32, 1, 3.2, 10, 32, 100

Figure 5. The same as figure 4, but in the case of a double reaction front. Parameter values used

in this example are: λ = 1
3
, β = 3, V = 1

2
, and ε = 0.01. Hence α = 2

3
, v2 = 1

2
and ω2 = 2

3
P .

(a) Solution profiles with P = 0.01. Profiles are shown at the same dimensionless times as in

figure 4a; (b) same as (a) but with P = 100. Profiles are shown at the same dimensionless times

as in figure 4b.

(1979) as discussed by Hopkins (1992). This solver uses the method of lines, and a

finite element collocation procedure is used for the spatial discretisation. The effects of

numerical dispersion were minimised in the simulations by the choice a fine spatial mesh.

The evolution of the system is illustrated for a single reaction front in figure 4 and

for a double reaction front in figure 5. In both figures, part a corresponds to ‘slow’

reactions (P < 1), while part b corresponds to ‘fast’ reactions (P > 1). In both figures the

equilibrium concentration (or equivalently, the temperature) adjusts smoothly towards

the analytic solution of equation (3.2). The fluid and solid concentrations evolve in a

more complex fashion as the depletion front and the thermal front separate in space.

In figure 4a, the first structure to form is the fluid front when τ ∼ ε/(1 + V )2 ≈ 0.001

followed by the thermal front when τ ∼ 1 and the depletion front when τ ∼ 1/λβP ≈ 50.

Consequently, a sharp front in fluid concentration forms at the fluid front before moving

towards the depletion front as chemical reactions become significant. In figure 4b, the

fluid front again forms when τ ∼ ε/(1 + V )2 ≈ 0.001 but in this case the depletion front
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forms over a comparable timescale τ ∼ 1/λβP ≈ 0.005 and so there is no time for a sharp

fluid front to form. At very small times, diffusion dominates over advection in equations

(2.10) and (2.11). Since ε < 1 it follows that the thermal difference between the injection

and formation fluids (expressed as a change in equilibrium concentration) propagates

further than the chemical difference. Hence, there is a region near the source for which

C > CE at short times. Precipitation occurs and the nondimensional solid concentration

S rises above unity. At longer times, however, advection dominates over diffusion and

this precipitated zone is removed by a dissolution reaction. At long times both solutions

in figure 4 tend towards the type of asymptotic solution shown in figure 3b.

In figure 5a, the first structure to form is the fluid front when τ ∼ ε/(1 + V )2 ≈ 0.004

followed by the thermal front when τ ∼ 1 and the depletion front when τ ∼ 1/λβP ≈

300. In contrast, in case the case shown in figure 5b, the depletion front forms when

τ ∼ 1/λβP ≈ 0.03, and so is well established before the thermal front begins to appear

sharp. At long times both solutions in figure 5 tend towards the type of asymptotic

solution shown in figure 3a.

The evolution of the system towards the other asymptotic cases shown in figures 2

and 3 is similar to figures 4 and 5 but the details differ owing to the different initial

conditions.

6. Discussion and Conclusions

We have examined the structure of the reaction fronts which develop when undersat-

urated fluid is injected at a constant rate into a reactive porous medium containing fluid

at a different temperature. We have shown that there is a critical difference in compo-

sition between the injection and formation fluids which determines whether (i) a single

reaction front develops, as a depletion front travels downstream of the thermal front, or
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Figure 6. Graphical representation of the criterion distinguishing the single and double reaction

front solutions. The typical case where Γ = 1 is shown. cf − ci is a measure of the difference in

composition between the formation and injection fluids. νsf is a measure of the amount of solid

reactant present initially on the rock.

(ii) two distinct reaction fronts evolve, as a separate thermal reaction front propagates

downstream of the depletion front. Numerical solution of the initial value problem il-

lustrates how the solution evolves with time (figures 4 and 5) towards the asymptotic

reaction front structure (figures 2 and 3). One striking feature of this analysis is that

we have identified circumstances in which an initially homogeneous permeable rock may

develop three regions of different mineral content as a result of being flooded by fluid

with different mineral content and temperature to the original formation fluid (§3.2). In

other situations, however, we have shown that only two zones of different mineral content

develop following the fluid migration through the layer (§3.1).

Although the model is simple, it is of interest to examine the implications of this work

for the injection of water into hydrocarbon and geothermal reservoirs. Firstly, inequality

3.6 identifies the conditions under which a single reaction front structure develops, de-

pending on the composition of the injected fluid and the initial concentration of reactant

in the rock. For a typical system with Γ ∼ 1 this relation reduces to the requirement

that νsf < (cf − ci) for the single reaction front solution to develop. Thus, as shown in

figure 6, the single reaction front solution develops when (i) the rock contains relatively

little reactant initially, or (ii) the formation fluid has a concentration which is sufficiently

greater than that of the injection fluid. Conversely, a double reaction front solution de-

velops when (i) the rock contains a relatively large amount of reactant initially, or (ii)

the formation fluid has a concentration which exceeds that of the injection fluid by a
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relative ly small amount, or (iii) the injection fluid has a higher concentration than the

formation fluid.

The time-scale required to establish the reaction structure (max(1/k,DT /Γ2u2)) de-

pends on the effective thermal diffusivity (DT ∼ 10−6 m2/s), the speed of the flow

(u ∼ 10−4 − 10−5 m/s for engineered flows), and the reaction kinetics time-scale 1/k

which may be of order tens of minutes to a few hours, although this may vary substan-

tially depending on the conditions. Therefore, for engineered flows we expect the asymp-

totic reaction front structure of figures 2 and 3 to develop within hours. In the naturally

occurring geological context, typical flow rates may be smaller, of order 10−6 − 10−7

m/s. The formation of the thermal front then requires about a year, but subsequently

the frontal structure of figures 2 and 3 will again provide an accurate asymptotic model

for the structure of the reaction fronts.

In the analysis above we have neglected any cross-flow heat transfer to neighbouring

impermeable layers. Such layers may be important over long timescales, as the high

permeability aquifer equilibrates thermally through cross-flow diffusion of heat. If the

formation consists of a series of impermeable layers with thicknesses of order d, and high

permeability aquifers with thicknesses of order h, then thermal equilibration requires a

time of order te ∼ (d + h)2/4DT . Therefore, for small times t � te, the value of Γ used

in the above model for determining the relative speed of depletion and thermal fronts is

that associated with the high permeability aquifer. However, at longer times, t � te, Γ

should take the revised value Γ̂ = ρcpl/(φ̂ρlcpl + (1− φ̂)ρscps) where φ̂ = φh/(h + d).

In this long-time limit, the thermal front migrates at a speed which is smaller than at

short times. Therefore, it may be that during the initial phase of injection, a double front

structure develops, with the depletion front trailing the thermal reaction front. However,

as the aquifer equilibrates with the neighbouring impermeable layers, the thermal reaction
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front decelerates, and if Γ̂ is sufficiently small, then the thermal reaction front may be

overtaken and incorporated into the depletion front at long times. The effects of such

cross-flow diffusion may be important in a highly stratified formation, with relatively

thin layers. For example, the time for thermal equilibration across a 1 m layer is of order

0.03 year, while the time for equilibration across a 10 m layer is of order 3 years. The

former time-scale may be relevant for engineered water injection systems, while the latter

may be short in comparison with a natural geologically-driven flow. We deduce that the

record of a double reaction front in the rock, which may be manifest by the formation

of three zones of different mineral content, may be rather different for flows which are

relatively short-lived (compared to the thermal equilibration time te) and for flows which

are relatively long-lived.

Depletion fronts and thermal reaction fronts may produce a substantial change in the

permeability of a rock, thereby modifying the flow pattern and pressure drop across the

formation with time (Phillips (1991); Raw & Woods (1999)). Furthermore, in the case of

dissolution, the reaction fronts may become unstable and a broader reaction zone may

then develop (cf. Hinch & Bhatt (1990)). We plan to report on these effects, as applied

to the double reaction front structure, in more detail in a subsequent contribution.

This work has been supported by the BP Institute and the Newton Trust, Cambridge.

Appendix A. General recurrence relations

In general, the relationships between the functions in equation (3.16) are

fn =
− 1

2V f ′n−1 + 1
2ηf ′n−2 + 1

4εf ′′n−2 −
∑n−1

m=1 fmgn−m + 1
2 (n− 2)fn−2

Pg0
, (A 1)
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g′n = −(n− 1) (gn−1 + λfn−1)− η
(
g′n−1 + λf ′n−1

)
− 1

2
λεf ′′n−1 + λV f ′n, (A 2)

for n > 0 where we define fm(η) = gm(η) ≡ 0 for m < 0. For example, we have

f0 (η) = 1 + (β− 1)
1 + erf(η)

2
, (A 3)

g0 (η) = 1 + λV (1− β)
1− erf(η)

2
, (A 4)

f1 (η) =
V (1− β)
2P
√

π

exp−η2

g0(η)
, (A 5)

It follows that the dimenionless rate of transfer of reactant is, to leading order in τ−1/2,

PS(CE − C) = τ−1/2

[
V (1− β)

2
√

π

]
exp−η2 (A 6)
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