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We consider the displacement of a ‘formation fluid’ by an ‘injection fluid’ along a tem-
perature gradient in a reactive porous rock. We assume that the formation fluid is in
chemical equilibrium initially and we allow the injection fluid to differ from the forma-
tion fluid both in temperature and in chemical composition. Two types of reaction front
can form as the injection fluid propagates into the rock - (i) ‘depletion fronts’ caused
by any undersaturation of the injection fluid and (ii) ‘thermal reaction fronts’ caused
by any difference in temperature between the injection fluid and the trailing edge of
the formation fluid. As flow proceeds the temperature gradient in the formation fluid is
advected at the thermal propagation speed, but the fluid itself moves more quickly at
the interstitial fluid speed. This difference in speed causes formation fluid to be carried
out of chemical equilibrium and a ‘gradient reaction’ results. The subsequent dissolution
or precipitation alters the amount of reactant present on the rock and this alters the
propagation speed of any subsequent depletion front. We derive the six dimensionless
parameters controlling the evolution of the system and calculate approximate solution
profiles for the limit of fast kinetics and negligible diffusion. These solutions give insight
into the physical processes governing the solution and are compared with numerical so-
lutions of the full equations. The behaviour of the system is strongly influenced by three
dimensionless parameters in particular. The parameters JC and JT quantify the chemical
and thermal difference between the fluids at the point of injection and they control the
relative positions of the depletion and thermal fronts at short times. On the other hand,
the parameter α quantifies the background thermal gradient and controls the relative
positions of the fronts at long times. In the cases where the depletion front moves from
one side of the thermal front to the other, we derive approximate expressions for the time
at which this ‘crossover’ occurs.

1. Introduction
In naturally occurring rocks, the geothermal temperature gradient may give rise to ver-

tical temperature changes as large as 10◦C.km−1. Since the equilibrium concentration of
mineral species in solution varies with temperature, it follows that the pore-fluid can be
stratified both in temperature and in chemical composition. This chemical stratification
can lead to significant redistribution of minerals when the interstitial fluid is displaced
by fluid flow. In particular, displacement of the fluid across the original isotherms re-
sults in under-saturation or super-saturation of the fluid, and associated precipitation or
dissolution of mineral species [Phillips, 1991].

As an example, vertical displacement of fluid in geothermal systems may be driven by



2 T. E. Jupp and A. W. Woods

Figure 1. Sketches showing how the ‘thermal’ and chemical profiles would be advected down-
stream in the absence of diffusion and chemical reactions. The equilibrium concentration profile
CE (which is a proxy for temperature and shown in grey) is advected at speed Γu while the
chemical profile C (shown in black) is advected at speed u/φ. (The corresponding dimensionless
speeds, defined in §2, are 1 and (1 + V ) respectively). After a time t the different speeds of
advection have separated the two profiles. Chemical reactions would tend to drive dissolution or
precipitation reactions where C < CE or C > CE . Diffusion would tend to smooth out the sharp
fronts shown here. (a) A ‘positive’ gradient in equilibrium concentration, in which CE increases
downstream; (b) As (a) but in the case of a ‘negative’ gradient (CE decreases downstream).

buoyant convection associated with anomalous heat sources. More generally, displace-
ment flows can develop in geological settings if a permeable rock is invaded by fluid from
a source at higher pressure. Such flows may result from tectonic fracturing - which might
connect one permeable layer to a deeper layer at higher pressure - or sea-level changes
causing saline water to displace fresh water in coastal permeable rocks. In an indus-
trial context, displacement flows often arise in hydrocarbon and geothermal reservoirs
when water is injected into a reservoir in order to displace the formation fluid towards
production wells.

A simple model for ‘gradient reactions’ - in which fluid is displaced along a temperature
gradient - can be constructed as follows. In a rock with porosity φ and uniform temper-
ature gradient G, a uniform flow with transport speed u along the gradient advects the
isotherms at speed Γu where Γ is the ratio of specific heat of the fluid to that of the
bulk [Jupp & Woods, 2003]. Assuming for simplicity that the equilibrium concentration
of the fluid is a linear function of temperature (ce = a + bT ) it follows that the equilib-
rium concentration of the fluid at any fixed point in the rock evolves with time at a rate
bGΓu. Meanwhile the fluid moves through the pore spaces at the interstitial speed u/φ.
The difference between the rate of advective transport of concentration along the tem-
perature gradient, bGu/φ, and the local rate of change in concentration associated with
the advection of the temperature field, bGΓu, leads to reaction at a rate proportional to
bGu(1/φ−Γ). This reaction may be one of precipitation or dissolution, depending on the
sign of bG (Figure 1). We explore this model for gradient reactions in more detail in §3.

In addition to gradient reactions, any chemical or thermal differences between the
injection and formation fluids can lead to the formation of travelling ‘fronts’. We define
the ‘fluid front’ to be the boundary between the injection and formation fluids. This
is manifest as a jump in the chemical composition and moves at the interstitial fluid
speed u/φ. In contrast, the thermal difference between the injection and formation fluids
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defines a ‘thermal front’ which moves at the lesser speed Γu. The physical reason for
this is that thermal signals travel through both the pore space and the rock, whereas
chemical signals travel through the pore space alone. It follows that individual parcels
of fluid travel faster than the thermal front and are able to cross it. These fluid parcels
may experience a change in equilibrium concentration when crossing the thermal front
leading to precipitation or dissolution reactions. The ‘thermal front’ can therefore induce
a ‘thermal reaction front’ across which the concentration of the fluid changes. If the rock
becomes depleted in reactant, however, reactions cease and the thermal reaction front can
become decoupled from the thermal front to be advected downstream at the interstitial
fluid velocity. If the injection fluid is undersaturated at the point of injection it will
dissolve solid reactant there until the rock is fully depleted and a ‘depletion front’ forms.
Upstream of a depletion front, the solid concentration is zero and no further reactions
are possible.

The aim of this work is to explore how depletion and thermal reaction fronts are
influenced by gradient reactions. The distinction between depletion fronts and thermal
reaction fronts in porous rocks is discussed in detail by Jupp & Woods (2003). Our
aim here is to complement that work by considering the influence of a gradient reaction
associated with the flow.

The remainder of this paper is organised as follows. In §2, we develop a formal math-
ematical model for the system and derive the dimensionless parameters which govern its
evolution. We also review the chemical balance relations which govern the speed at which
reaction fronts move. In §3 we derive an analytical solution for the gradient reaction in
the displaced formation fluid. In §4 we consider the interaction of a gradient reaction on
the propagation of reaction fronts. In particular, we derive approximate solution profiles
valid in the limit of ‘fast kinetics’ in which the advective supply of chemical reactant is
rate limiting. These approximate solution profiles are compared with numerical solutions
of the full governing equations. Finally, we give an estimate of the timescales over which
different physical processes occur.

2. The governing equations
A full derivation of the governing equations used here is given by Jupp & Woods (2003).

The equations in this present paper differ in the presence of a background temperature
gradient in the initial conditions and in the chosen nondimensionalisation.

The evolution of temperature is controlled by an advection-diffusion equation of the
form

∂T

∂t
+ Γu

∂T

∂x
= DT

∂2T

∂x2
, (2.1)

where DT is the thermal diffusivity of the fluid-filled porous medium and Γ is the ratio
of the volumetric heat capacity of the fluid to that of the the fluid-filled medium. For
simplicity, we assume that the equilibrium concentration of the dissolved mineral species
is a linear function of temperature, so that ce = a+ bT where a and b are constants. The
case b > 0 corresponds to a ‘prograde’ mineral whose solubility increases as temperature
increases, while the case b < 0 corresponds to a ‘retrograde’ mineral whose solubility
decreases as temperature increases. The assumption that dce ∝ ±dT allows us to treat
equilibrium concentration as a proxy for temperature. Consequently, all thermal effects
are described in terms of the attendant change in equilibrium concentration. The first
governing equation comes from rewriting the thermal balance of equation 2.1 in terms of
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the equilibrium concentration:

∂ce

∂t
+ Γu

∂ce

∂x
= DT

∂2ce

∂x2
, (2.2)

and we refer to the front which develops in the equilibrium concentration at x = Γut as
the ‘thermal front’. Equation 2.2 is subject to the boundary condition

ce(0, t) = cie, t > 0 (2.3)

and the initial condition
ce(x, 0) = cf + bGx (2.4)

where G is the initial thermal gradient.
The second governing equation controls the evolution of the fluid concentration c and

is an advection-diffusion-reaction equation of the form

∂c

∂t
+

(
u

φ

)
∂c

∂x
= DC

∂2c

∂x2
+ k

(
s

sf

)
(ce − c), (2.5)

where k is the reaction rate. Equation 2.5 is subject to the boundary condition

c(0, t) = ci, t > 0 (2.6)

and the initial condition
c(x, 0) = ce(x, 0) = cf + bGx. (2.7)

The third and final governing equation controls the evolution of the solid concentration
s:

∂s

∂t
= −k

φ

ν (1− φ)

(
s

sf

)
(ce − c). (2.8)

where ν is a stoichiometric factor expressing the idea that ν moles of solid reactant may
be required to react fully with each mole of fluid reactant. We suppose for simplicity that
solid reactant is uniformly distributed through the rock initially so that equation 2.8 has
the initial condition:

s(x, 0) = sf . (2.9)

2.1. Dimensionless form of the governing equations
It is useful at this point to recast the governing equations 2.2, 2.5 and 2.8 in dimensionless
form. The thermal front migrates with speed Γu, and so we introduce the dimensionless
coordinates

ξ =
k

Γu
x, τ = kt, (2.10)

We also define the dimensionless concentrations

C(ξ, τ) =
φ(c− ci)

(1− φ)νsf
, CE(ξ, τ) =

φ(ce − ci)
(1− φ)νsf

, S(ξ, τ) =
s

sf
. (2.11)

It follows from equations 2.2, 2.5 and 2.8 that the evolution of the system is governed by
the dimensionless system of equations

∂CE
∂τ

+ ∂CE
∂ξ

= P ∂2CE

∂ξ2

∂C
∂τ

+ (1 + V )∂C
∂ξ

= εP ∂2C
∂ξ2 + S (CE − C)

∂S
∂τ

= −S (CE − C)

(2.12)
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with initial conditions

CE(ξ, 0) = C(ξ, 0) = JC +
α

V
ξ for ξ > 0 (2.13)

S(ξ, 0) = 1 for ξ > 0, (2.14)

and boundary conditions

CE(0, τ) = JC − JT and C(0, τ) = 0 for τ > 0. (2.15)

The six dimensionless parameters controlling the evolution of the system are therefore

V = 1− φΓ
φΓ , P = kDT

Γ2u2 , JT = φ(cf − cie)
(1− φ)νsf

,

JC = φ(cf − ci)
(1− φ)νsf

, ε = DC
DT

, α = bGu (1− φΓ)
(1− φ)νsfk

.
(2.16)

The parameter V is a measure of the relative speeds at which thermal and chemical
signals are advected, since V = (u/φ − Γu)/Γu. The parameter P can be interpreted
as a dimensionless reaction rate. The governing equations show that chemical reaction
occurs over a timescale 1/k, while the thermal front becomes established on a timescale
DT /Γ2u2. This is the value of time t at which the thermal front has been advected
a distance Γut comparable to the distance

√
DT t that it has spread under dispersion

and diffusion. Thus, P is the ratio of the timescale of formation of the thermal front
(DT /Γ2u2) to the timescale over which reactions occur (1/k). The parameter JT is a
measure of the difference in temperature between the injection and formation fluids,
expressed in terms of the attendant difference in equilibrium concentration. We shall show
in §5.2 that JT controls the initial speed of the thermal reaction front. The parameter JC

is a measure of the difference in concentration between the injection and formation fluids.
We shall show in §5.1 that JC controls the initial speed of the depletion front. Throughout
this paper, we restrict attention to cases where the incoming fluid is either saturated
JC = JT or undersaturated JC > JT . We do not consider the case of oversaturated
injection fluid (JC < JT ) in which precipitation at the point of injection would tend to
clog the pores of the rock. The parameter ε is the ratio of the chemical and thermal
diffusivities. The parameter α is a dimensionless measure of the background thermal
gradient and can be interpreted as the ratio of two rates. The quantity bG (u/φ− Γu)
is the rate of change of the equilibrium concentration ce experienced by formation fluid
as it travels at speed u/φ along the temperature gradient G which is advected at speed
Γu. On the other hand, the quantity (1 − φ)νsfk/φ is a measure of the rate at which
the injection fluid concentration c can change under the influence of chemical reactions
alone. The parameter α is the ratio of these two rates and so a small value of α indicates
that the reaction rate is large compared to the rate of advective disequilibrium. We note
for completeness that the special case α = 0 is considered by Jupp & Woods (2003) in
terms of the alternative dimensionless parameters λ = JC − JT and β = JC/(JC − JT ).

2.2. Chemical balance at reaction fronts
We now consider chemical balance at thermal reaction fronts and depletion fronts. In
either case, the chemical balance at the front can be expressed in terms of the dimen-
sionless variables defined in the previous section (Figure 2). For a front at ξ = ξf moving
at speed Vf = dξf/dτ , fluid particles move at a dimensionless speed 1 + V − Vf relative
to the front and so there is a net molar flux (1+V −Vf )(∆C)f of dissolved reactant past
the front. Similarly, there is a net molar flux Vf (∆S)f of solid reactant past the front.
Chemical balance implies that these fluxes must be equal and so we deduce that the
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Figure 2. Chemical balance at a front (which may be a depletion front or a thermal reaction
front). In the ξ − τ reference frame the front lies at ξf and moves at dimensionless speed Vf ,
while particles of fluid move at dimensionless speed (1+V ). The dimensionless distance between
the front at ξf and the fluid front at (1 + V )τ is denoted by ζf .

jump in solid concentration across the front (∆S)f and the jump in fluid concentration
across the front (∆C)f must be linked by the equation:

Vf (∆S)f = (1 + V − Vf )(∆C)f (2.17)

and so the speed of the front Vf is given by

dξf

dτ
= Vf =

1 + V

1 + (∆S)f

(∆C)f

(2.18)

Later in this paper we shall make use of the variable ζf = (1+V )τ − ξf representing the
dimensionless distance between a front at ξ = ξf and the fluid front at ξ = (1 + V )τ . It
follows that

dζf

dτ
= 1 + V − Vf =

1 + V

1 + (∆C)f

(∆S)f

(2.19)

3. The gradient reaction solution in the formation fluid
The fluid front at ξ = (1 + V )τ separates the formation fluid from the injection fluid.

Diffusion tends to smooth the jump in concentration between the two fluids but has
a negligible effect sufficiently far away from the front. Thus, an approximate solution
within the displaced formation fluid (neglecting diffusive effects) is:

CE = JC + α
V (ξ − τ)

C = JC + α
V (ξ − τ)− (f(τ) + ατ − 1)

S = f(τ)
(3.1)

where the governing equations 2.12 imply that the function f(τ) satisfies

df

dτ
+ ατf + f(f − 1) = 0, f(0) = 1. (3.2)
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Figure 3. The behaviour of the function f(τ) (thin lines), representing the downstream value
of the dimensionless solid concentration S. In each plot, f(τ) is shown for a range of values of α
drawn from the set {±0.01,±0.03,±0.1,±0.3, . . . ,±100} with values of α shown in small type.
(a) Plot of f against dimensionless time τ ; (b) Plot of f(τ) against the rescaled time co-ordinate√
|α|τ , showing that f(τ) ≈ exp(−ατ2/2) (thick lines) when |α| � 1; (c) Plot of f(τ) against

the rescaled time co-ordinate |α|τ showing that f(τ) ≈ 1− ατ (thick lines) when τ < 1/α and
|α| � 1. When α < 0 this linear behaviour is valid for all positive times, but when α > 0, we
have f(τ) ≈ 0 for τ > 1/α.

The solution of equation 3.2 can be calculated analytically and takes distinct forms
depending on whether the gradient parameter α is zero, positive, or negative (Appendix
A). Graphs of this solution are plotted in Figure 3, for a range of values of the gradient
parameter α. Later in this paper, we shall make use of the function f(τ) and its definite
integral F (τ) =

∫ τ

0
f(t) dt (Appendix A). Although exact expressions for f(τ) and F (τ)

can be derived (equations A 1 and A2) they are complex and rather difficult to interpret.
We shall therefore derive simple approximations for f(τ) and F (τ) in the limits |α| � 1
and |α| � 1.

3.1. Approximate gradient reaction solutions when |α| � 1 or |α| � 1
When the thermal gradient is very small or very large (in the sense that |α| � 1 or
|α| � 1) the exact solution of equation A1 can be replaced by simple approximations
derived from series expansions (Appendix A).
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If the dimensionless gradient is large (|α| � 1) then gradient drives a reaction in which
the reaction rate k is rate limiting. It can then be shown that

|α| � 1 :



f(τ) ≈ exp
(
−ατ2

2

)

F (τ) ≈


√

π
−2αerfi

(√
−α
2 τ

)
, α � −1

√
π
2αerf

(√
α
2 τ

)
, α � 1

(3.3)

where erf x = 2√
π

∫ x

0
exp−y2 dy and erfi x = 2√

π

∫ x

0
exp y2 dy. The solutions of equation

3.3 are illustrated in Figure 3b. When α � 1, the gradient drives a dissolution reaction
and so the downstream solid concentration is depleted to zero in a dimensionless time
of order 1/

√
α. On the other hand, when α � −1 the gradient drives a precipitation

reaction and the downstream solid concentration increases for all time.
If the dimensionless gradient is small (|α| � 1) then the gradient drives a reaction

in which the advective supply of reactant is rate limiting. When this is a dissolution
reaction (0 < α � 1) we have:

0 < α � 1 :



f(τ) ≈

 1− ατ if τ 6 1/α

0 if τ > 1/α

F (τ) ≈

 τ − 1
2ατ2 if τ 6 1/α

1/2α if τ > 1/α

(3.4)

and so the downstream solid concentration is depleted linearly to zero in a dimensionless
time of order 1/α (Figure 3c). This corresponds to a dimensional time of order φbG(u/φ−
Γu)/(1− φ)νsf and so the time for downstream depletion is independent of the reaction
rate k. This is precisely what we might expect since this is a regime in which the reaction
rate is not rate-limiting.

When |α| � 1 and the gradient drives a precipitation reaction, the dimensionless
downstream solid concentration f(τ) no longer depletes to zero but grows indefinitely.
In this case we obtain:

−1� α < 0 :

 f(τ) ≈ 1− ατ

F (τ) ≈ τ − 1
2ατ2

(3.5)

For the remainder of this paper we restrict attention to the limit of fast kinetics (|α| � 1)
in which the approximations of equations 3.4 or 3.5 apply.

3.2. The influence of the gradient reaction

We showed in the previous section that the gradient reaction solution in the formation
fluid is given by equation 3.1. We now consider how this gradient reaction affects the
intruding injection fluid. Ultimately, we shall consider two regimes defined by the relative
positions of the depletion front and the thermal front. Firstly, however, we illustrate the
nature of the solution with some simple examples of numerical solutions of the equations.
The solutions were calculated using the PDECOL solver package of Madsen & Sincovec
(1979) as discussed by Hopkins (1992). This solver uses the method of lines, and a
finite element collocation procedure is used for the spatial discretisation. The effects of
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numerical dispersion were minimised in the simulations by the choice of a fine spatial
mesh.

The simplest case of all is that in which there is no depletion front and no thermal
front, so that JT = JC = 0 (Figures 4a,b). There is no depletion front because the
incoming fluid is saturated and there is no thermal front because the injection fluid has
the same temperature as the trailing edge of the formation fluid. At dimensionless time
τ , the temperature of the injection fluid has been advected a dimensionless distance τ
and so there is a change in the thermal gradient at ξ = τ . Downstream of ξ = τ the
different advective speeds of thermal and chemical signals mean that fluid is constantly
carried out of chemical equilibrium and a gradient reaction results. When α > 0 the
gradient drives a depletion reaction (Figure 4a) and when α < 0 it drives a precipitation
reaction (Figure 4b). Upstream of ξ = τ the injection fluid is saturated so no reactions
occur. This means that the passage of the gradient reaction is recorded on the rock as
an altered value of the solid concentration S.

A depletion front can be added to the simple situations described above by allowing
the incoming fluid to be undersaturated, so that JC > JT (Figures 4c,d). The solution
at the point of injection ξ = 0 then takes the simple form

CE(0, τ) = (JC − JT ), C(0, τ) = 0, S(0, τ) = exp (−(JC − JT )τ) (3.6)

It follows that the rock at the point of injection is depleted of solid reactant over a dimen-
sionless timescale of order 1/(JC−JT ) and so this can be interpreted as the dimensionless
timescale over which the depletion front forms. Once the depletion front has formed it
propagates into the medium at a speed governed by the amount of solid reactant it must
dissolve to return to equilibrium according to the chemical balance of equation 2.18. It
follows that the speed of the depletion front is influenced by the value of the solid concen-
tration S that it encounters. The solid concentration records the legacy of the passage of
the gradient reaction. When α > 0 the gradient drives a dissolution reaction and so the
solid concentration decreases downstream. The depletion front therefore accelerates over
time as it must dissolve an ever decreasing amount of solid reactant. On the other hand,
when α < 0 the gradient reaction deposits solid reactant on the rock and so the solid
concentration increases downstream. This means that the depletion front decelerates over
time as it must dissolve an ever increasing amount of solid reactant.

A thermal front will develop if there is a difference in temperature between the injection
fluid and the trailing edge of the formation fluid, so that JT 6= 0 (Figures 5a,b). This
thermal front tends to drive a dissolution reaction if JT > 0 and a precipitation reaction
if JT < 0, but otherwise the situation is similar to those already discussed. Figure 5a
illustrates a typical situation in which the depletion front lies downstream of the thermal
front (‘Regime 1’). The thermal front is unable to drive a reaction because it lies in
a region which has already been depleted of solid reactant by the depletion front. On
the other hand, Figure 5b illustrates a typical situation in which the thermal front lies
downstream of the depletion front (‘Regime 2’). In this case the thermal front is able to
drive a reaction and so a thermal reaction front exists in addition to the depletion front.

4. Approximate solution profiles in the limit of fast reactions and
negligible diffusion

In the previous section, we presented numerical solutions of the governing equations in
order to illustrate how gradient reactions, depletion fronts and thermal fronts interact. We
now derive approximate solution profiles in order to demonstrate the physical balances
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Figure 4. Solution profiles illustrating some simple cases. Numerical solutions of the full gov-
erning equations are shown (dotted lines) alongside approximate profiles (solid lines) calculated
using the methods described in §4. Values of the dimensionless parameters are shown in each
case, including the dimensionless time after injection τ . (a) The simplest case, in which there
is no thermal jump (JT = 0) and the injection fluid is saturated (JC = JT ). Here α > 0 and so
the gradient drives a dissolution reaction; (b) As part (a) but with α < 0 so that the gradient
drives a precipitation reaction; (c) A more complicated case, in which a depletion front forms
because the injection fluid is undersaturated (JC > JT ); (d) As part (c) but with α < 0.

ξ < τ τ < ξ

CE JC − JT JC + α
V

(ξ − τ)

Table 1. Solution profile for the equilibrium concentration in the limit of negligible diffusion.

governing these interactions. For simplicity, we consider the limit in which diffusion is
negligible and the reaction rate is not rate limiting for the gradient reaction (|α| � 1).
The approximate profile of the equilibrium concentration CE is therefore given by the
profile in Table 1.



Injection into a gradient 11

Figure 5. As figure 4, but showing solution profiles for the general case in which a gradient
reaction, a depletion front and a thermal front are all present. (a) A typical solution in ‘Regime
1’ (depletion front downstream of thermal front); (b) A typical solution in ‘Regime 2’ (thermal
front downstream of depletion front).

ξ < ξd ξd < ξ

C 0 JC + α
V

(ξ − τ)− (f(τ) + ατ − 1)
S 0 f(τ)

Table 2. Regime 1: approximate solution profiles for the fluid and solid concentrations when
the depletion front lies downstream of the thermal front and the reaction rate is not rate-limiting
(|α| � 1).

4.1. Regime 1: Depletion front lies downstream of thermal front
Firstly, we consider ‘Regime 1’ in which the depletion front lies downstream of the ther-
mal front (e.g. Figure 5a). The gradient reaction solution of equation 3.1 applies approx-
imately as far upstream as the depletion front, since the reaction rate is large (|α| � 1).
It follows that the approximate solution profiles in Table 2 apply and so the jumps in
fluid and solid concentration across the depletion front are:

(∆C)d ≈ JC + α
V (ξd − τ)− (f(τ) + ατ − 1)

(∆S)d ≈ f(τ) (4.1)

It then follows from equation 2.19 that ζd = (1 + V )τ − ξd evolves according to the
equation:

dζd

dτ
≈ (1 + V )f(τ)

1 + JC − αζd/V
. (4.2)

In summary, when the system is in Regime 1, the approximate position of the depletion
front can be calculated by integrating equation 4.2 and the approximate profiles are given
by Tables 1 and 2, and are compared with full numerical solutions in figure 5a.

4.2. Regime 2: Thermal front downstream of depletion front
We now consider ‘Regime 2’ in which the thermal front lies downstream of the depletion
front. In this case the gradient reaction solution of equation 3.1 applies (approximately)
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ξ < ξd ξd < ξ < ξt ξt < ξ

C 0 JC − JT JC + α
V

(ξ − τ)− (f(τ) + ατ − 1)

S 0

{
f(ξ)− V (∆C)t , ξ < τdc

0, ξ > τdc
f(τ)

Table 3. Regime 2: approximate solution profiles for the fluid and solid concentrations when
the thermal front lies downstream of the depletion front and the reaction rate is not rate-limiting
(|α| � 1). The dimensionless decoupling time τdc is defined in the text.

as far upstream as the thermal reaction front (Figure 5b). The solid concentration down-
stream of the thermal reaction front is f(τ). At the thermal reaction front, the jumps in
fluid and solid concentration are denoted by (∆C)t and (∆S)t. The solid concentration
S must always be non-negative and so f(τ) constitutes an upper bound for (∆S)t. The
speed of the thermal reaction front is governed by chemical balance (equation 2.18) and so
the thermal reaction front can be ‘coupled’ to the thermal front only if (∆S)t = V (∆C)t.
We deduce that

(∆C)t ≈ JT + α
V (ξt − τ)− (f(τ) + ατ − 1)

(∆S)t ≈ min (f(τ), V (∆C)t)
(4.3)

In other words, if there is sufficient solid reactant downstream of the front then (∆S)t =
V (∆C)t and the thermal reaction front is coupled to the thermal front (ξt = τ). On the
other hand, if there is insufficient solid reactant downstream of the front then (∆S)t =
f(τ) and the thermal reaction front is decoupled from the thermal front (ξt > τ).

We define the ‘dimensionless decoupling time’ τdc to be the least positive value of τ for
which f(τ) = V (∆C)t (if such a solution exists). This is the time at which the thermal
reaction front becomes decoupled from the thermal front because of an insufficient supply
of solid reactant.

We deduce that the approximate solution profiles given in Table 3 apply for Regime 2
and so the jumps in fluid and solid concentration at the depletion front are therefore:

(∆C)d ≈ JC − JT

(∆S)d ≈
{

f(ξd)− V (∆C)t if ξd 6 τdc

0 if ξd > τdc

(4.4)

The speeds of the thermal reaction front can now be calculated using equations 4.3
and 4.4. It follows from equation 2.19 that ζt = (1 + V )τ − ξt evolves according to the
equation

dζt

dτ
≈

{
V if τ 6 τdc

(1 + V )f(τ)
1 + JT − αζt/V

if τ > τdc
(4.5)

In the limit of fast reactions considered here, |α| � 1, (∆C)t ≈ JT for τ < τdc. It then
follows from equation 2.18 that the speed of the depletion front is given by:

dξd

dτ
≈

{ (JC − JT )(1 + V )
(JC − (1 + V )JT ) + f(ξd)

if ξd 6 τdc

1 + V if ξd > τdc

(4.6)

In summary, when the system is in Regime 2, the approximate position of the thermal
reaction front can be calculated by integrating equation 4.5 and the approximate position
of the depletion front can be calculated by integrating equation 4.6. The approximate
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Figure 6. A typical solution when the system remains in Regime 1 for all time. Labelling as
in Figure 4

.

solution profiles are given by Tables 1 and 3, and are compared with full numerical
solutions in figure 5b.

5. Evolution of the system over time
In the previous section we defined the two solution regimes for the system according

to the relative positions of the thermal and depletion fronts. The sign of the gradient
parameter α determines whether the gradient drives a dissolution reaction or a precipita-
tion reaction and hence whether the depletion front accelerates or decelerates over time.
It is therefore possible for the system start in one regime but to move into a different
regime for sufficiently long times.

5.1. System begins in Regime 1

If the system begins in Regime 1 then the approximate solution of Table 2 applies at
short times (Figure 6a). Equation 4.1 shows that (∆C)d → JC and (∆S)d → 1 as τ → 0
and so we deduce from equation 2.18 that

dξd

dτ
→ (1 + V )

1 + 1/JC
as τ → 0 in Regime 1 (5.1)

It follows that the system cannot be in Regime 1 at short times if JC < 1/V . The
position of the depletion front while the system remains in Regime 1 can be calculated
approximately by integrating equation 4.2 with initial condition ζd(0) = 0:

ζd ≈
V (1 + JC)

α

[
1−

√
1− 2α(1 + V )F (τ)

V (1 + JC)2

]
(5.2)

We now consider whether the system can crossover into Regime 2.
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Figure 7. As Figure 6, but illustrating the case where the system begins in Regime 1 but
moves into Regime 2 at long times.

If the gradient is small and positive (0 < α � 1), it follows from equation 3.4 that:

ζd ≈


V (1 + JC)

α

[
1−

√
1− α(1 + V )(2τ − ατ2)

V (1 + JC)2

]
for τ < 1/α

V (1 + JC)
α

[
1−

√
1− (1 + V )

V (1 + JC)2

]
for τ > 1/α

(5.3)

This shows that, for dimensionless times greater than 1/α, the rock in the downstream
region is fully depleted by the gradient reaction. The depletion front then moves at
dimensionless speed (1 + V ) and so ζd is constant.

On the other hand, if the gradient is small and negative (−1� α < 0) then the gradient
drives a deposition reaction and the depletion front decelerates, eventually crossing to
the upstream side of the thermal front at the ‘crossover time’ τc. This is the time for
which ζd(τc) = V τc in equation 5.2. It follows (using equation 3.5) that:

τc ≈
2(1− V JC)

α
(5.4)

when the system crosses from Regime 1 to Regime 2. A typical solution in which the
system crosses from Regime 1 to Regime 2 is shown in Figure 7.

5.2. System begins in Regime 2
If the system begins in Regime 2, then the solution of Table 3 and equations 4.5 and 4.6
applies at short times. Equation 4.3 shows that (∆C)t → JT and (∆S)t → min (1, V JT )
as τ → 0. It follows from equation 2.18 that

dξt

dτ
→ max

(
1,

(1 + V )
1 + 1/JT

)
as τ → 0 (5.5)

Since we consider only cases in which the injection fluid is undersaturated (JT 6 JC), it
follows that the system begins in Regime 2 if JC < 1/V .

If the gradient is small and negative (−1� α < 0) it drives a deposition reaction. The
depletion front then decelerates over time and so the system remains in Regime 2 for all
subsequent times. An example of this behaviour is shown in Figure 8.
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Figure 8. As Figure 6, but illustrating the case where there system remains in Regime 2 at all
times.

On the other hand, if the gradient is small and positive (0 < α � 1) it drives a dissolu-
tion reaction. The depletion front then accelerates over time and so the system eventually
crosses into Regime 1 at the crossover time τc. The position of the depletion front, while
the system remains in Regime 2, can be calculated approximately by integrating equation
4.6 with initial condition ξd(0) = 0. This gives

F (ξd) + (JC − (1 + V )JT )ξd ≈ (JC − JT )(1 + V )τ (5.6)

and so the crossover time from Regime 2 to Regime 1 (for which ξd(τc) = τc) is

τc ≈
2(1− V JC)

α
. (5.7)

We note that this expression has the same form as the crossover time from Regime 1 to
Regime 2 (equation 5.4). Equations 4.3 and 3.4 can be used to deduce that the decoupling
time is

τdc ≈
1− V JT

α
. (5.8)

A typical solution in which the system moves from Regime 2 into Regime 1 is shown in
Figure 9.

A summary of the timescales inherent in the problem is given in Table 4.

6. Discussion and Conclusions
We have considered the influence of a streamwise thermal gradient on a displacement

flow in a reactive porous medium. We derived an analytical solution for the gradient
reaction when the initial distribution of solid reactant is uniform and investigated the
effect of this gradient reaction on the speeds and relative positions of thermal reaction
fronts and depletion fronts.

Approximate solution profiles for the limit of no diffusion and fast kinetics were derived
(Tables 1, 2, 3; Figures 6, 7, 8 and 9). These profiles give insight into the fundamental
physics and are consistent with the results of numerical simulations . They also yield
approximate expressions for the crossover time τc and the decoupling time τdc in the
limit of fast kinetics (|α| � 1) (Table 4).

When 0 < α � 1 the gradient drives a dissolution reaction. For sufficiently large times
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Figure 9. As Figure 6, but illustrating the case where the system begins in Regime 2 but
moves into Regime 1 at long times.

Process Dimensionless timescale

Chemical equilibration 1

Formation of thermal front P

Formation of fluid front εP/(1 + V )2

Formation of depletion front 1/(JC − JT )

Depletion by gradient reaction (if 0 < α � 1) 1/α

Decoupling of thermal reaction front (if 0 < α � 1) τdc ≈ (1− V JT )/α

Crossover of depletion front and thermal front (if |α| � 1) τc ≈ 2(1− V JC)/α

Table 4. The approximate dimensionless timescales associated with the evolution of the
system, expressed in terms of the governing dimensionless parameters.

(τ � 1/α), the downstream rock is totally depleted of reactant by the gradient reaction.
It follows that no further reactions can occur and any frontal structure that has developed
will simply advected downstream at dimensionless speed (1 + V ).

We derived the dimensionless parameters which govern the nature of the solution. In
particular we showed how the solution depends on the three parameters α, JC and JT .
The parameter α is a measure of the rate of advective supply to the gradient reaction in
relation to the rate of chemical kinetics. The parameter JC controls the position of the
depletion front at short times τ � τc. If JC < 1/V the depletion front lies upstream of
the thermal front at short times, while for JC > 1/V the depletion front lies downstream
of the thermal front at short times. The parameter α controls the evolution of the speed
of the depletion front, and hence whether it will ‘crossover’ from one side of the thermal
front to the other. When α = 0, the speed of the depletion front is constant [Jupp &
Woods, 2003]. When α > 0 the depletion front accelerates over time and when α < 0 the
depletion front decelerates over time. This behaviour is summarised in Figure 10.
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Figure 10. Diagrams illustrating how the parameters JC and JT control the regime of the
system at short times, while the parameter α controls the regime of the system at long times.

In a real geological flow regime, we might expect fluid flow with transport velocity of
order 10−8 − 10−7 m.s−1 and a background geothermal gradient G in the range 0.001−
0.01 K.m−1. If the reaction rate k had a value in the range 10−4 − 10−6 s−1 (so that
the reaction time k−1 ranged from a few hours to a few days), then we should expect
that α ∼ 10−4 − 10−2 and so the limit of fast kinetics investigated here would apply.
For a rock with uniform mineral concentration at the start of the flow, the downstream
concentration of mineral in the rock would decrease linearly with time after the start
of the flow, as a result of the gradient reaction. This causes the thermal reaction front
to decouple from the thermal front and migrate ahead of it. At long times, the thermal
reaction front would lag a fixed distance behind the leading edge of the injected liquid.
It follows that flow of this sort might lead to large zones of undersaturated water in the
region between the thermal and thermal reaction fronts. The advance of the thermal
reaction front leads to a more rapid depletion of the mineral content of the rock than
would occur under the influence of the gradient reaction alone.

There may be a significant dynamic impact associated with the two different fronts.
In particular, the change in temperature across the thermal front may lead to changes in
fluid viscosity, porosity and permeability across the thermal reaction front. If the fronts
lead to a decrease in mobility, then the flow across the front may become unstable, as
with the acid etching instability [Hinch & Bhatt, 1990]. In a two or three dimensional
flow, these fronts may also change the large scale structure of the flow [Menand et al.,
2003]. Furthermore, in time dependent flows, such as those produced by sea-level change,
reacting fluids may produce up to three zones of permeability and fluid within the rock,
naturally leading to the formation of bands of mineralisation and stratification of the
connate water.

This work has been supported by the BP Institute and the Newton Trust, Cambridge.
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Appendix A. Exact solution for the gradient reaction
The substitution u(τ) = 1/f(τ) can be used to derive an analytical solution of equation

3.2. This solution is:

f(τ) =


exp

(
−α

2 (τ− 1
α )2

)
√

π
−2α

[
erfi(
√
−α

2 (τ− 1
α ))−erfi

(√
−1
2α

)]
+exp(−1

2α )
, α < 0

1, α = 0
exp

(
−α

2 (τ− 1
α )2

)
√

π
2α

[
erf(
√

α
2 (τ− 1

α ))−erf
(
−
√

1
2α

)]
+exp(−1

2α )
, α > 0

(A 1)

where erf x = 2√
π

∫ x

0
exp−y2 dy and erfi x = 2√

π

∫ x

0
exp y2 dy. By definition, F (τ) =∫ τ

0
f(t) dt, and so equation A 1 can be integrated to give:

F (τ) =


log

[√
π
−2α

(
erfi

(√
−α
2

(
τ − 1

α

))
− erfi

(
1√
−2α

))
+ exp

(−1
2α

)]
+ 1

2α , α < 0

τ, α = 0
log

[√
π
2α

(
erf

(√
α
2

(
τ − 1

α

))
− erf

(
−1√
2α

))
+ exp

(−1
2α

)]
+ 1

2α , α > 0
(A 2)

The following series can be truncated to give asymptotic expressions in the limit x → 0
[Abramovitz & Stegun, 1964].

exp (x) =
∑∞

k=0
xk

k! , erf (x) = 2√
π

∑∞
k=0

(−1)kx2k+1

(2k+1)k!

erfi (x) = 2√
π

∑∞
k=0

x2k+1

(2k+1)k!

(A 3)

The following series can be truncated to give asymptotic expressions in the limit x→∞
[Abramovitz & Stegun, 1964].

erf (x) = 1−
exp

(
−x2

)
x
√

π

∞∑
k=0

(−1)k (2k)!

k! (2x)2k
, erfi (x) =

exp
(
x2

)
x
√

π

∞∑
k=0

(2k)!

k! (2x)2k
(A 4)
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